General Intelligence and Reasoning

Completion of Figural Pattern
Non-Verbal Classification
Mirror Image and Water Image
Verbal Series
Arrangement of Words in a Logical Order (Alphabetical Order)
General Intelligence and Reasoning
Finding the Missing Number
Cubes and Dices
Verbal Analogy
Deviation of Figure
Blood Relationship
Symbols & Notations
Direction & Distance Test
Logical Venn-Diagram
Scheduled Day/Date/Time
Ranking/Arrangement
Miscellaneous
Non-Verbal Analogy or Similarity
Verbal Classification
Paper Cutting, Folding & Punching
Embedded Figure
Syllogism, Statement & Conclusions
Coding-Decoding
Non-Verbal Series
Word Formation
Arithmetical Problems

General Awareness

Indian Polity and Constitution
Indian Art & Culture
Geography Of India
Economics
History of India
Indian Economy
World History
Physical Geography
World Geography
Honours and Awards
Biology
Chemistry
Miscellaneous
Computer and IT
Physics
Books and Authors
National Events
Discoveries and Inventions
Science and Technology
Sports
Important Decades, Years and Days
UNO, Other International and National Organisations
International Events
Science
Science
Personalities
World Art and Culture

Quantitative Aptitude

LCM and HCF
Simplification
Average
Ratio and Proportion
Quantitative Aptitude
Trigonometry
Boat and Stream
Discount
Percentage
Time and Work
Statistics & Data Interpretation
Pipe and Cistern
Sequence and Series
Miscellaneous
Mensuration
Time and Distance
Profit and Loss
Compound Interest
Geometry
Simple Interest
Algebra
Number System
Power, Indices and Surds
Approximation
Simple and Decimal Fraction
Area and Perimeter
Circles
Triangles
Trigonometric Ratios
Volume and Surface Area
Straight Lines
Factorisation
Set Theory
Height and Distance
Logarithms
Polynomials
Quadratic Equations
Quadrilateral and Parallelogram
Partnership

English Comprehension

Comprehension Test
Transformation of Sentences (Active/Passive)
Arrangement of Sentences
Improvement of Sentences
Idioms/ Phrases
One word substitution
Cloze Test
Miscellaneous
Direct/ Indirect Speech
Fill in the Blanks
Common Errors
Antonyms
Synonyms
English Comprehension
Selection of misspelt word/ correctly spelt word
General English

Q 1.

Correct2

Incorrect-0.5

In, two similar triangles {tex} \triangle {/tex} ABC and {tex} \triangle {/tex} DEF, DE = 3 cm, EF = 5 cm, DF = 4 cm and BC = 20 cm, then length of AB is equal to

15 cm

12 cm

10 cm

6 cm

From similar triangles ABC and DEF

{tex} \frac{AB}{BC} = \frac{DE}{EF} {/tex}

{tex} \therefore \frac{AB}{20} = \frac{3}{5} {/tex}

=> {tex} AB = \frac{3 \times 20}{5} {/tex} = 12 cm.

Q 2.

Correct2

Incorrect-0.5

If angles of one triangle are respectively equal to the angles of another triangle, then ratio of the corresponding sides is ratio of the corresponding

medians

bisector angles (angle bisector segments)

altitude

all of these

Q 3.

Correct2

Incorrect-0.5

The locus of the vertex A of an isosceles triangle, ABC which has BC as its fixed base is

a line parallel to BC

a line perpendicular to BC

a circle with BC as a diameter

perpendicular bisector of BC

Q 4.

Correct2

Incorrect-0.5

If AB and CD are two chords intersecting at a point P inside the circle such that AP = CP, then consider the following statements :

Assertion (A) : AB = CD,

Reason (R) : APC and DPB are similar triangles

Of these statements

both A and R are true, and R is correct explanation of A.

both A and R are true, but R is not a correct explanation of A.

A is true, but R is false.

A is false, but R is true

Q 5.

Correct2

Incorrect-0.5

If a triangle and a rectangle have equal areas and equal altitude, then base of the triangle is equal to

base of the rectangle.

twice the base of the rectangle.

thrice the base of the rectangle.

four times the base of the rectangle

Let h be the common height of triangle and the rectangle.

If a and b respectively be the bases of triangle and rectangle, then by hypothesis

{tex} \frac{1}{2}a \times h = b \times h {/tex}

=> {tex} \frac{1}{2}a = b {/tex}

=> a = 2b

Q 6.

Correct2

Incorrect-0.5

Area of an isosceles right-angled triangle is 800 sq. metres. The greatest possible square has been cut out from it. The length of the diagonal of this square will be

{tex} 10\ \sqrt{2} m{/tex}

{tex} 10\ \sqrt{3} m{/tex}

20 m

{tex} 20\ \sqrt{2} m{/tex}

Let x be the base and side of isosceles {tex} \triangle ABC {/tex}.

By hypothesis,

{tex} \frac{1}{2}x \times x = 800 {/tex}

=> {tex} x^{2} = 1600 {/tex}

=> x = 40 m

Therefore, Hypotenuse, BC = 2 x = 40 x/2 m

If s be the side of the maximum square, then

{tex} s^{2}+\frac{1}{2} \left(x-s\right)s+\frac{1}{2} \left(x-s\right)2=800 {/tex}

=> {tex} s^{2}+xs-s^{2} = 800 {/tex}

=> {tex} xs = 800 {/tex}

=> {tex} s = \frac{800}{40} = 20 m {/tex}

Therefore, Length of diagonal of the square = {tex} 20 \sqrt{2} m {/tex}

Q 7.

Correct2

Incorrect-0.5

If perimeter of a triangle is 100 m and its sides are in the ratio 1 : 2 : 2, then area of the triangle (in {tex} m^{2} {/tex}) is

{tex} 100 \sqrt{3} {/tex}

{tex} 100 \sqrt{15} {/tex}

{tex} 100 \sqrt{5} {/tex}

{tex} 100 \sqrt{7} {/tex}

Let the Sides. be x, 2x and 2x.

Then x + 2x + 2x = 100

=> x = 20

Hence sides are 20, 40 and 40.

Therefore, s = 50 [Because, 2s = x+b+c]

Area of the triangle

= {tex} \sqrt{s \left(s-a\right) \left(s-b\right) \left(s-c\right) } {/tex}

= {tex} \sqrt{50 \left(50-20\right) \left(50-40\right) \left(50-40\right) } {/tex}

= {tex} \sqrt{50 \times 30 \times 10 \times 10} {/tex}

= {tex} 100 \sqrt{15} m^{2} {/tex}

Q 8.

Correct2

Incorrect-0.5

In the given figure, AD is the internal bisector and AE is the external bisector of {tex} \angle {/tex}BAC of any {tex} \triangle {/tex} ABC. Then which one of the following statements is not correct?

{tex} AC^{2} = DC \times CE {/tex}

{tex} AC \times CD = AC \times BD {/tex}

{tex} AB : AC = BE : CE {/tex}

{tex} \angle ADE - 90 ^{\circ} {/tex}

(a) {tex} \triangle ABC - \triangle ADB - \triangle CDB {/tex}

From {tex} \triangle ABC\ and\ \triangle ADB {/tex}

{tex} \angle ABC = \angle ADB = 90 ^{\circ} {/tex}

AB = AB, common

From A-S-A, {tex} \triangle ABC - \triangle ADB {/tex}

Again, from {tex} \triangle ABC\ and\ \triangle CDB {/tex}

{tex} \angle C = common {/tex}

{tex} BC = common {/tex}

{tex} \angle ABC = \angle CBD {/tex}

From A-S-A, {tex} \triangle ABC - \triangle ADB {/tex}

From (i) and (ii)

{tex} \triangle ABC = \triangle ADB - \triangle CDB {/tex}

(b) From {tex} \triangle ADB - \triangle BDC {/tex}

{tex} \frac{BD}{AD} = \frac{DC}{BD} {/tex}

{tex} \therefore BD^{2} = AD \times DC {/tex}

And from {tex} \triangle ADB - \triangle ABC {/tex}

{tex} \frac{AB}{AD} = \frac{AC}{AB} {/tex}

(c) {tex} \frac{\triangle ADB}{\triangle CDB} = \frac{\frac{1}{2}AD \times BD}{\frac{1}{2}CD \times BD} {/tex}

= {tex} \frac{AD}{CD} = \frac{AB^{2}}{BC^{2}} \ne \frac{AB}{BC} {/tex}

Q 9.

Correct2

Incorrect-0.5

In the given figure, {tex} \angle {/tex}ABC = {tex} \angle {/tex}ADB = {tex} 90^{\circ} {/tex}, which one of the following statements does not hold good?

{tex} \triangle {/tex} ABC, ADB and CDB are similar.

{tex} AD \times DC {/tex}

{tex} \triangle ADB : \triangle CDB = AB : BC {/tex}

{tex} AB^{2} = AD \times AC {/tex}

{tex} AD = \sqrt{AB^{2}-BD^{2}} {/tex}

= {tex} \sqrt{x^{2}-\frac{x^{2}}{4}} {/tex}

= {tex} \frac{\sqrt{3}}{2}x {/tex}

Therefore, Area of {tex} \triangle ABC = \frac{1}{2} \times BC \times AD {/tex}

= {tex} \frac{1}{2} \times x \times \frac{x\sqrt{3}}{2} {/tex}

= {tex} \frac{\sqrt{3}}{4}x^{2} {/tex}

Q 10.

Correct2

Incorrect-0.5

Area of an equilateral triangle of side x is

{tex} \frac{x^{2}}{\sqrt{2}} {/tex}

{tex} \frac{\sqrt{3}}{4} x^{2} {/tex}

{tex} \frac{\sqrt{3}}{2} x^{2} {/tex}

{tex} \frac{\sqrt{3}}{2} x^{3} {/tex}

Here 'O' is the centroid of triangle and centroid of triangle divides line segment in the ratio 2 : 1 Here BO : OM = 2 : 1

Now, in {tex} \triangle ABD {/tex}

{tex} \left(AD\right)^{2} = \sqrt{AB^{2}-BD^{2}} {/tex}

= 36 - 9

=27

{tex} AD = 3\sqrt{3} cm = BM {/tex}

{tex} \because \triangle ABC\ is\ an\ equilateral\ triangle {/tex}

Now BM = BO + OM

{tex} 3\sqrt{3} = 2x+x {/tex}

{tex} \therefore x = \sqrt{3} {/tex}

{tex} \therefore OB = 2\sqrt{3} cm {/tex}

Q 11.

Correct2

Incorrect-0.5

In the given figure, {tex} \triangle ABC {/tex} is an equilateral triangle. O is the point of intersection of the medians. If AB = 6 cm, then OB is equal to

{tex} 3\sqrt{3}cm {/tex}

{tex} 2\sqrt{3}cm {/tex}

{tex} \sqrt{3}cm {/tex}

{tex} \frac{\sqrt{3}}{2}cm {/tex}

Q 12.

Correct2

Incorrect-0.5

If an isosceles right triangle has an area 200 sq. cm, then area of a square drawn on hypotenuse is

400 sq. cm

{tex} 400 \sqrt{2} cm {/tex}

800 sq. cm.

{tex} 800 \sqrt{2} cm {/tex}

Area of isosceles right triangle

={tex} \frac{1}{2} \times BC \times AB {/tex}

= {tex} \frac{1}{2} \times x \times x {/tex}

{tex} 200 = \frac{1}{2}x^{2} {/tex}

{tex} \therefore x^{2} = 400 {/tex}

{tex} \therefore x = 2- cm{/tex}

{tex} \therefore AC = \sqrt{x^{2}+x^2} = \sqrt{2x^{2}} {/tex}

= {tex} \sqrt{2}x = 20\sqrt{2} cm {/tex}

Now square is drawn on hypotenuse of isosceles right angle triangle.

Hence side of square = {tex} AC = 20\sqrt{2} cm {/tex}

Area of square = {tex} \left(20\sqrt{2}\right)^{2} {/tex} = 800 cm.

Q 13.

Correct2

Incorrect-0.5

{tex} \triangle ABC\ and\ PQR {/tex} are congruent if

{tex} \angle ABC = \angle QPR {/tex} and {tex} \angle BCA = \angle QRP {/tex}

{tex} AB = PQ,\ AC=PR {/tex} and {tex} \angle ABC = \angle PQR {/tex}

{tex} AB= PQ,\ \angle ABC = \angle PQR {/tex} and {tex} \angle BAC = \angle PRQ {/tex}

{tex} BC = QR,\ AC = PR {/tex} and {tex} \angle ACB = \angle PRQ{/tex}

{tex} \triangle PQR\ and\ \triangle LMN {/tex} are similar triangle (given)

{tex} \frac{PQ}{LM} = \frac{QR}{MN} = \frac{PR}{LN} {/tex}

Now {tex} \frac{PQ}{LM} = \frac{1}{3} {/tex}

{tex} \therefore \frac{1}{3} = \frac{QR}{MN} {/tex}

=> {tex} \frac{1}{3} = \frac{QR}{9} {/tex}

{tex} \left(\because MN = 9 cm\right) {/tex}

Therefore, QR = 3 cm.

Q 14.

Correct2

Incorrect-0.5

{tex} \triangle {/tex}PQR and {tex} \triangle {/tex}LMN are similar. If 3 PQ = LM and MN = 9 cm, then QR is equal to

3 cm

6 cm

9 cm

12 cm

Q 15.

Correct2

Incorrect-0.5

If D, E, F are mid-points of the sides BC, CA and AB respectively of a triangle ABC, then which one of the following is not correctly matched?

If G is centroid of the {tex} \triangle ABC {/tex}, then AG : GD = 2 : 1

If G is centroid of the {tex} \triangle ABC {/tex}, then G is centroid of the {tex} \triangle DEF {/tex}.

If {tex} \ \angle A = 90 ^{\circ} {/tex}, then A is orthocentre of the {tex} \triangle ABC {/tex}.

If {tex} \ \angle A > 90 ^{\circ} {/tex}, then orthocentre of the {tex} \triangle ABC {/tex} lies inside the {tex} \triangle ABC {/tex}.

Q 16.

Correct2

Incorrect-0.5

If lengths of two sides of a triangle are given, then its area is greater when

both the sides are greater than the third

angle between sides is a right angle.

angle between sides is an obtuse angle.

angle between sides is an acute angle.

Q 17.

Correct2

Incorrect-0.5

Consider following statements relating to the congruency of two right-angled triangles.

1. Equality of two sides of one triangle with same two sides of the second makes the triangle congruent.

2. Equality of hypotenuse and a side of one triangle with the hypotenuse and a side of the second respectively makes the triangles congruent.

3. Equality of hypotenuse and an acute of triangle with the hypotenuse and an angle of the second respectively makes the triangles congruent.

Of these statements

1, 2 and 3 are correct

1 and 2 are correct

1 and 3 are correct

2 and 3 are correct

Q 18.

Correct2

Incorrect-0.5

If {tex} \triangle ABC {/tex} is a right angled triangle with {tex} \angle A = 90 ^{\circ} {/tex}, AN is perpendicular to BC, BC =12cm and AC = 6cm, then the ratio of {tex} \frac{area\ of \ \triangle ANC}{area\ of\ \triangle ABC} {/tex} is

1 : 2

1 : 3

1 : 4

1 : 8

{tex} \triangle AMC\ and\ \triangle BAC {/tex} are similar.

{tex} \frac{Area\ of\ \triangle AMC}{Area\ of\ \triangle BAC} = \left(\frac{AC}{BC}\right)^{2} = \left(\frac{6}{12}\right)^{2} = \frac{1}{4} = 1 : 4 {/tex}

Q 19.

Correct2

Incorrect-0.5

In A PQR, the medians QM and RN intersect at O. PO meets QR in L. If OL is 2.5 cm, then PL is equal to

5 cm

10 cm

2.5 cm

7.5 cm

Always median of triangle meets at a point called centroid and centroid divides a line segment in the ratio 2 : 1

i.e., here '0' is the centroid

{tex} \therefore PO = OL = 2 : 1 {/tex}

Now, OL = 2.5 cm

{tex} \therefore OP = 2 \times 2.5 = 5 cm {/tex}

{tex} \therefore PL = OP + OL {/tex}

= {tex} \left(5 + 2.5\right) cm = 7.5 cm {/tex}

Q 20.

Correct2

Incorrect-0.5

If side of an equilateral triangle is {tex} 20 \sqrt{3} cm {/tex}, then numerical value of the radius of the circle circumscribing the triangle is

20 cm

{tex} 20 \sqrt{3} cm {/tex}

{tex} 20 \pi cm {/tex}

{tex} \frac{20}{ \pi } cm {/tex}

Here as the triangle is an equilateral triangle, so here the altitude drawn from each vertex 0 triangle meet at a common point and it can be called centroid.

{tex} AB=BC=AC=20\sqrt{3} cm {/tex}

{tex} \therefore BD=DC=EC=EA=AF=BF {/tex}

= {tex} \frac{20\sqrt{3}}{2} = 10\sqrt{3} {/tex}

{tex} Now\ in\ \triangle ADB {/tex}

{tex} \left(AD\right)^{2}= \left(AB\right)^{2}- \left(BD\right)^{2} {/tex}

={tex} \left(20\sqrt{3}\right)^{2}- \left(10\sqrt{3}\right)^{2} {/tex}

={tex} 1200 - 300 = 900 {/tex}

{tex} \therefore AD = 30 cm {/tex}

Now AO : OD = 2 : 1

{tex} \therefore 2x+1x=30 {/tex}

{tex} \therefore AO = r = 2x = 20 cm {/tex}

Your request has been placed successfully.