# SSC > Simple and Decimal Fraction

Explore popular questions from Simple and Decimal Fraction for SSC. This collection covers Simple and Decimal Fraction previous year SSC questions hand picked by experienced teachers.

General Intelligence and Reasoning
General Awareness
Quantitative Aptitude
English Comprehension
Q 1.

Correct2

Incorrect-0.5

Out of the fractions, {tex} \frac{4}{7},\frac{5}{13},\frac{6}{11}, \frac{3}{5} \ and \ \frac{2}{3} {/tex} which is the second smallest fraction?

A

{tex} \frac{4}{7} {/tex}

B

{tex} \frac{5}{13} {/tex}

{tex} \frac{6}{11} {/tex}

D

{tex} \frac{3}{5} {/tex}

##### Explanation

{tex} \frac{4}{7} = 0.57, \frac{5}{13} = 0.38, \frac{6}{11} = 0.54, \frac{3}{5} = 0.6, \frac{2}{3} = 0.67 {/tex}

So the second smallest fraction is {tex} \frac{6}{11} {/tex}

Q 2.

Correct2

Incorrect-0.5

1088.88 + 1800.08 + 1880.80 = ?

A

8790.86

B

8890.86

C

5588.8

4769.76

##### Explanation

1088.88 + 1800.08 + 1880.80 = 4769.76

Q 3.

Correct2

Incorrect-0.5

6435.9 + 7546.4 + 1203.5 = ?

A

15188.5

15185.8

C

15155.5

D

15815.8

##### Explanation

6435.9 + 7546.4 + 1203.5 = 15185.8

Q 4.

Correct2

Incorrect-0.5

726.34 + 888.12 ? = 1001.88

612.58

B

602.64

C

654.54

D

618.78

##### Explanation

726.34 + 888.12 - ? = 1001.88

Therefore, ? = 726.34 + 888.12 - 1001.88

= 1614.46 -1001.88 = 612.58

Q 5.

Correct2

Incorrect-0.5

{tex} \frac{16}{23} \times \frac{47}{288} \times \frac{92}{141} {/tex} = ?

A

{tex} \frac{4}{27} {/tex}

{tex} \frac{2}{27} {/tex}

C

{tex} \frac{2}{29} {/tex}

D

{tex} \frac{3}{28} {/tex}

##### Explanation

{tex} \frac{16}{23} \times \frac{47}{288} \times \frac{92}{141} = \frac{4}{18 \times 3} = \frac{2}{9 \times 3} = \frac{2}{27} {/tex}

Q 6.

Correct2

Incorrect-0.5

{tex} 1\frac{3}{5} + 1\frac{8}{9} + 2\frac{4}{5} {/tex} = ?

A

{tex} 6\frac{19}{45} {/tex}

B

{tex} 6\frac{16}{45} {/tex}

C

{tex} 6\frac{17}{45} {/tex}

{tex} 6\frac{13}{45} {/tex}

##### Explanation

{tex} 1\frac{3}{5}+1\frac{8}{9}+2\frac{4}{5} = \left(1+1+2\right) + \left(\frac{3}{5}+\frac{8}{9}+\frac{4}{5}\right) {/tex}

{tex} 4 + \frac{27+40+36}{45} {/tex}

{tex} 4 + \frac{103}{45} = 4 + 2\frac{13}{45} = 6\frac{13}{45} {/tex}

Q 7.

Correct2

Incorrect-0.5

19999 = ? 21111

0.947

B

0.749

C

0.497

D

0.794

##### Explanation

{tex} \frac{19999}{21111} = 0.947 {/tex}

Q 8.

Correct2

Incorrect-0.5

{tex} \frac{1212}{0.5} = 6.06 \times ? {/tex}

A

4.04

400

C

0.4

D

0.44

##### Explanation

{tex} ? = \frac{1212}{0.5 \times 6.06} = \frac{1212}{5 \times 606} \times 10 \times 100 {/tex}

= {tex} \frac{1212}{3030} \times 1000 = \frac{1212 \times 100}{303} = 400 {/tex}

Q 9.

Correct2

Incorrect-0.5

{tex} 33 + 371 \div 7 {/tex} = ?

A

89

B

85

86

D

84

##### Explanation

{tex} 33 + 371 \div 7 = 33 + \frac{371}{7} = 33 + 53 = 86 {/tex}

Q 10.

Correct2

Incorrect-0.5

{tex} \left(39.3 \times 53.4\right) + \left(26.7 \times 5.9\right) {/tex} = ?

A

2520.15

2256.15

C

2562.15

D

2652.15

##### Explanation

{tex} \left(39.3 \times 53.4\right) + \left(26.7 \times 5.9\right) {/tex}

= {tex} 2098.62 + 157.53 = 2256.15{/tex}

Q 11.

Correct2

Incorrect-0.5

{tex} \frac{3}{4} of \frac{5}{6} of \frac{7}{10} of 1664 {/tex} = ?

A

648

B

762

C

612

728

##### Explanation

{tex} ? = \frac{3}{4} \times \frac{5}{6} \times \frac{7}{10} \times 1664 = 728 {/tex}

Q 12.

Correct2

Incorrect-0.5

If the fractions {tex} \frac{19}{21}, \frac{21}{25}, \frac{25}{29}, \frac{29}{31} \ and \ \frac{31}{37} {/tex} are arranged in ascending order of their values, then which one will be the 2nd?

A

{tex} \frac{19}{21} {/tex}

{tex} \frac{21}{25} {/tex}

C

{tex} \frac{25}{29} {/tex}

D

{tex} \frac{29}{31} {/tex}

##### Explanation

{tex} \frac{19}{21} = 0.904, \frac{21}{25} = 0.84, \frac{25}{29} = 0.86 {/tex}

{tex} \frac{29}{31} = 0.93, \frac{31}{37} = 0.837 {/tex}

{tex} 0.837 < 0.84 < 0.86 < 0.904 < 0.93 {/tex}

{tex} Clearly, \ \frac{21}{25} \ will \ be \ on \ second \ number {/tex}

Q 13.

Correct2

Incorrect-0.5

{tex} 783 \div 9 \div 0.75 {/tex} = ?

A

130

B

124

C

118

116

##### Explanation

{tex} ? = \frac{783}{9 \times 0.75} = 116 {/tex}

Q 14.

Correct2

Incorrect-0.5

4 + 4.44 + 44.4 + 4.04 + 444 = ?

A

472.88

B

495.22

500.88

D

577.2

##### Explanation

4.00 + 4.44 + 44.40 + 4.04 + 444.00 = 500.88

Q 15.

Correct2

Incorrect-0.5

When 0.252525.........is converted into fraction, then find the result.

{tex} \frac{25}{99} {/tex}

B

{tex} \frac{25}{90} {/tex}

C

{tex} \frac{25}{999} {/tex}

D

{tex} \frac{25}{9999} {/tex}

##### Explanation

0.252525 = {tex} 0.\bar{25} = \frac{25}{99} {/tex}

Q 16.

Correct2

Incorrect-0.5

Out of the fractions {tex} \frac{5}{7},\frac{4}{9},\frac{6}{11}, \frac{2}{5} and \frac{3}{4} {/tex} what is the difference between the largest and the smallest fractions?

A

{tex} \frac{6}{13} {/tex}

B

{tex} \frac{11}{18} {/tex}

C

{tex} \frac{7}{18} {/tex}

None of the above

##### Explanation

{tex} \frac{5}{7} = 0.71, \frac{4}{9} = 0.44, \frac{6}{11} = 0.54, \frac{2}{5} = 0.40, \frac{3}{4} = 0.75 {/tex}

Here, the largest fraction = {tex} \frac{3}{4} {/tex}

and the smallest fraction = {tex} \frac{2}{5} {/tex}

So, required difference = {tex} \frac{3}{4} - \frac{2}{5} = \frac{15 - 8}{20} = \frac{7}{20} {/tex}

Q 17.

Correct2

Incorrect-0.5

If the numerator of a fraction is increased by 200% and the denominator of the fraction is increased by 150%, the resultant fraction is 9/35. What is the original fraction?

A

{tex} \frac{3}{10} {/tex}

B

{tex} \frac{2}{15} {/tex}

C

{tex} \frac{3}{16} {/tex}

None of the above

##### Explanation

Let the original fraction be {tex} \frac{x}{y} {/tex}

Numerator is increased by 200%.

Therefore, Numerator = x + 200% of x

= {tex} x + \frac{200x}{100} {/tex}

= {tex} \frac{100x + 200x}{100} {/tex}

= {tex} \frac{300x}{100} {/tex}

and denominator of the fraction is by 150%.

Denominator = {tex} y + \frac{150y}{100} {/tex}

= {tex} \frac{100y + 15y}{100} {/tex}

= {tex} \frac{250y}{100} {/tex}

Then, according to the question,

{tex} \frac{300x/100}{250y/100} = \frac{9}{35} {/tex}

{tex} \frac{300x}{250y} = \frac{9}{35} {/tex}

Therefore, {tex} \frac{x}{y} = \frac{9}{35} \times \frac{250}{300} = \frac{3}{14} {/tex}

Q 18.

Correct2

Incorrect-0.5

A, B, C and D purchase a gift worth Rs.60. A pays {tex} \frac{1}{2} {/tex} of what others are paying, B pays {tex} \frac{1}{3} {/tex}rd of what others are paying and C pays {tex} \frac{1}{4} {/tex}th of what others are paying. What is the amount paid by D?

A

14

B

15

C

16

13

##### Explanation

Let A, B, C and D pay Rs.x, Rs.y, Rs.z andrs.a

According to the question,

{tex} x = \frac{1}{2} \left(y+z+a\right) {/tex} ...(i)

{tex} y = \frac{1}{3} \left(x+z+a\right) {/tex} ...(ii)

{tex} z = \frac{1}{4} \left(x+y+a\right) {/tex} ...(iii)

Also, x+ y+ z+a=60

Now, put the value of x + y + a = 4z

Then, 4z+ z = 60 => 52z = 60

Therefore, z = 12

Similarly, on putting the value of x + z + a = 3y, we get

3y + y = 60 => 4y = 60

Therefore, y = 15

Again, on putting the value of (y+ z+a) = 2x, we get

2x+ x=60 => 3x = 60

Therefore, x = 20

Now, x+ y+ z+a = 60

On putting the value of x,y and z, we get

12 + 15 + 20 + a = 60

Therefore, a = 60 - 47 = Rs.13

Q 19.

Correct2

Incorrect-0.5

{tex} \frac{1}{4} {/tex}th of number of boys and {tex} \frac{3}{8} {/tex}th of number of girls participated in annual sports of the school. What fractional part of total number of students participated?

A

32%

B

20%

C

36%

Data inadequate

##### Explanation

Total number of students participated

= {tex} \frac{1}{4}B + \frac{3}{8}G {/tex}

Therefore, Required percentage

= = {tex} \left(\frac{\frac{1}{4}B + \frac{3}{8}G} {B+G}\right) \times 100\% {/tex}

Clearly, given data is inadequate.

Q 20.

Correct2

Incorrect-0.5

The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, then the denominator becomes eight times the numerator, then find the fraction.

{tex} \frac{3}{7} {/tex}

B

{tex} \frac{4}{8} {/tex}

C

{tex} \frac{2}{7} {/tex}

D

{tex} \frac{3}{8} {/tex}

##### Explanation

Let denominator of fraction = x

Then, numerator = x - 4

Therefore, Fraction = {tex} \frac{x - 4}{x} {/tex}

Now, according to the question,

{tex} 8 \left[\left(x - 4\right) - 2 \right] = \left(x + 1\right) {/tex}

{tex} \left(x - 4\right) - 2 = \frac{ \left(x + 1\right) }{8} {/tex}

=> 8x - 48 = x + 1

=> 8x - x = 48 + 1

=> 7x = 49

=> x = {tex} \frac{49}{7} {/tex}

Therefore, x = 7

Therefore, Fraction = {tex} \frac{7 - 4}{7} = \frac{3}{7} {/tex}

Q 21.

Correct2

Incorrect-0.5

The greatest among the numbers {tex} \sqrt[4]{2}, \sqrt[5]{3}, \sqrt[10]{6} \ and \ \sqrt[20]{15} {/tex} is

A

{tex} \sqrt[20]{15} {/tex}

B

{tex} \sqrt[4]{2} {/tex}

{tex} \sqrt[5]{3} {/tex}

D

{tex} \sqrt[10]{6} {/tex}

##### Explanation

LCM of 4, 5, 10 and 20 = 20

{tex} \sqrt[4]{2} = \left(2\right)^{\frac{1}{4}} = \left(2^{5}\right)^{\frac{1}{20}} = \left(32\right)^{\frac{1}{20}} {/tex}

{tex} \sqrt[5]{3} = \left(3\right)^{\frac{1}{5}} = \left(3^{4}\right)^{\frac{1}{20}} = \left(81\right)^{\frac{1}{20}} {/tex}

{tex} \sqrt[10]{6} = \left(6\right)^{\frac{1}{10}} = \left(6^{2}\right)^{\frac{1}{20}} = \left(36\right)^{\frac{1}{2}} {/tex}

{tex} \sqrt[20]{15} = \left(15\right)^{\frac{1}{20}} {/tex}

The greatest number is {tex} \left(81\right)^{\frac{1}{20}} i.e. \sqrt[5]{3} {/tex}

Q 22.

Correct2

Incorrect-0.5

If the fraction {tex} \frac{a}{b} {/tex} is positive, then which of the following must be true?

A

a > 0

B

b > 0

ab > 0

D

a + b > 0

##### Explanation

If the fraction {tex} \frac{a}{b} {/tex} is positive, then ab > 0 must be true.

Q 23.

Correct2

Incorrect-0.5

If 1.5 x = 0.04 y, then find the value {tex} \left(\frac{y-x}{y + x}\right) {/tex}

A

{tex} \frac{730}{77} {/tex}

{tex} \frac{73}{77}{/tex}

C

{tex} \frac{73}{770}{/tex}

D

{tex} \frac{703}{77}{/tex}

##### Explanation

Given, 1.5x = 0.04y

{tex} \frac{y}{x} = \frac{1.5}{0.004} = \frac{150}{4} = \frac{75}{2} {/tex}

{tex} \left(\frac{y - x}{y + x}\right) = \left(\frac{\frac{y}{x}-1}{\frac{y}{x}+1}\right) = \left(\frac{\frac{75}{2}-1}{\frac{75}{2}+1}\right) = \frac{73}{77} {/tex}

Q 24.

Correct2

Incorrect-0.5

If 0.764y = 1.236x, then what is the value of {tex} \frac{y - x}{y + x} {/tex}?

A

0.764

0.236

C

2

D

0.472

##### Explanation

Given, 1.5x = 0.04y

{tex} \frac{y}{x} = \frac{1.236}{0.764} = \frac{309}{191} {/tex}

{tex} \left(\frac{y - x}{y + x} \right) = \left(\frac{\frac{y}{x}-1}{\frac{y}{x}+1}\right) = \left(\frac{\frac{309}{191}-1}{\frac{309}{191}+1}\right) = \left(\frac{\frac{118}{191}}{\frac{500}{191}}\right) = \frac{118}{500} {/tex}= 0.236

Q 25.

Correct2

Incorrect-0.5

Find the HCF of {tex} \frac{5}{6} {/tex},{tex} \frac{5}{18} {/tex} and {tex} \frac{25}{32} {/tex}

0.052

B

0.698

C

0.75

D

Cannot be determined

##### Explanation

{tex} HCF \ of \ \frac{5}{8}, \frac{15}{8}, \frac{25}{32} {/tex}

= {tex} \frac{HCF \ of \ 5, 15 \ and \ 25} {LCM \ of \ 6, 8 \ and \ 32} = \frac{5}{96} = 0.052{/tex}