On account of the disruption in education due to the corona pandemic, we're opening up our platform for teachers, free of cost. Know More →

SSC > Simple and Decimal Fraction

Explore popular questions from Simple and Decimal Fraction for SSC. This collection covers Simple and Decimal Fraction previous year SSC questions hand picked by experienced teachers.

Q 1.

Correct2

Incorrect-0.5

Out of the fractions, {tex} \frac{4}{7},\frac{5}{13},\frac{6}{11}, \frac{3}{5} \ and \ \frac{2}{3} {/tex} which is the second smallest fraction?

A

{tex} \frac{4}{7} {/tex}

B

{tex} \frac{5}{13} {/tex}

{tex} \frac{6}{11} {/tex}

D

{tex} \frac{3}{5} {/tex}

Explanation

{tex} \frac{4}{7} = 0.57, \frac{5}{13} = 0.38, \frac{6}{11} = 0.54, \frac{3}{5} = 0.6, \frac{2}{3} = 0.67 {/tex}

So the second smallest fraction is {tex} \frac{6}{11} {/tex}

Q 2.

Correct2

Incorrect-0.5

1088.88 + 1800.08 + 1880.80 = ?

A

8790.86

B

8890.86

C

5588.8

4769.76

Explanation

1088.88 + 1800.08 + 1880.80 = 4769.76

Q 3.

Correct2

Incorrect-0.5

6435.9 + 7546.4 + 1203.5 = ?

A

15188.5

15185.8

C

15155.5

D

15815.8

Explanation

6435.9 + 7546.4 + 1203.5 = 15185.8

Q 4.

Correct2

Incorrect-0.5

726.34 + 888.12 ? = 1001.88

612.58

B

602.64

C

654.54

D

618.78

Explanation

726.34 + 888.12 - ? = 1001.88

Therefore, ? = 726.34 + 888.12 - 1001.88

= 1614.46 -1001.88 = 612.58

Q 5.

Correct2

Incorrect-0.5

{tex} \frac{16}{23} \times \frac{47}{288} \times \frac{92}{141} {/tex} = ?

A

{tex} \frac{4}{27} {/tex}

{tex} \frac{2}{27} {/tex}

C

{tex} \frac{2}{29} {/tex}

D

{tex} \frac{3}{28} {/tex}

Explanation

{tex} \frac{16}{23} \times \frac{47}{288} \times \frac{92}{141} = \frac{4}{18 \times 3} = \frac{2}{9 \times 3} = \frac{2}{27} {/tex}

Q 6.

Correct2

Incorrect-0.5

{tex} 1\frac{3}{5} + 1\frac{8}{9} + 2\frac{4}{5} {/tex} = ?

A

{tex} 6\frac{19}{45} {/tex}

B

{tex} 6\frac{16}{45} {/tex}

C

{tex} 6\frac{17}{45} {/tex}

{tex} 6\frac{13}{45} {/tex}

Explanation

{tex} 1\frac{3}{5}+1\frac{8}{9}+2\frac{4}{5} = \left(1+1+2\right) + \left(\frac{3}{5}+\frac{8}{9}+\frac{4}{5}\right) {/tex}

{tex} 4 + \frac{27+40+36}{45} {/tex}

{tex} 4 + \frac{103}{45} = 4 + 2\frac{13}{45} = 6\frac{13}{45} {/tex}

Q 7.

Correct2

Incorrect-0.5

19999 = ? 21111

0.947

B

0.749

C

0.497

D

0.794

Explanation

{tex} \frac{19999}{21111} = 0.947 {/tex}

Q 8.

Correct2

Incorrect-0.5

{tex} \frac{1212}{0.5} = 6.06 \times ? {/tex}

A

4.04

400

C

0.4

D

0.44

Explanation

{tex} ? = \frac{1212}{0.5 \times 6.06} = \frac{1212}{5 \times 606} \times 10 \times 100 {/tex}

= {tex} \frac{1212}{3030} \times 1000 = \frac{1212 \times 100}{303} = 400 {/tex}

Q 9.

Correct2

Incorrect-0.5

{tex} 33 + 371 \div 7 {/tex} = ?

A

89

B

85

86

D

84

Explanation

{tex} 33 + 371 \div 7 = 33 + \frac{371}{7} = 33 + 53 = 86 {/tex}

Q 10.

Correct2

Incorrect-0.5

{tex} \left(39.3 \times 53.4\right) + \left(26.7 \times 5.9\right) {/tex} = ?

A

2520.15

2256.15

C

2562.15

D

2652.15

Explanation

{tex} \left(39.3 \times 53.4\right) + \left(26.7 \times 5.9\right) {/tex}

= {tex} 2098.62 + 157.53 = 2256.15{/tex}

Q 11.

Correct2

Incorrect-0.5

{tex} \frac{3}{4} of \frac{5}{6} of \frac{7}{10} of 1664 {/tex} = ?

A

648

B

762

C

612

728

Explanation

{tex} ? = \frac{3}{4} \times \frac{5}{6} \times \frac{7}{10} \times 1664 = 728 {/tex}

Q 12.

Correct2

Incorrect-0.5

If the fractions {tex} \frac{19}{21}, \frac{21}{25}, \frac{25}{29}, \frac{29}{31} \ and \ \frac{31}{37} {/tex} are arranged in ascending order of their values, then which one will be the 2nd?

A

{tex} \frac{19}{21} {/tex}

{tex} \frac{21}{25} {/tex}

C

{tex} \frac{25}{29} {/tex}

D

{tex} \frac{29}{31} {/tex}

Explanation

{tex} \frac{19}{21} = 0.904, \frac{21}{25} = 0.84, \frac{25}{29} = 0.86 {/tex}

{tex} \frac{29}{31} = 0.93, \frac{31}{37} = 0.837 {/tex}

{tex} 0.837 < 0.84 < 0.86 < 0.904 < 0.93 {/tex}

{tex} Clearly, \ \frac{21}{25} \ will \ be \ on \ second \ number {/tex}

Q 13.

Correct2

Incorrect-0.5

{tex} 783 \div 9 \div 0.75 {/tex} = ?

A

130

B

124

C

118

116

Explanation

{tex} ? = \frac{783}{9 \times 0.75} = 116 {/tex}

Q 14.

Correct2

Incorrect-0.5

4 + 4.44 + 44.4 + 4.04 + 444 = ?

A

472.88

B

495.22

500.88

D

577.2

Explanation

4.00 + 4.44 + 44.40 + 4.04 + 444.00 = 500.88

Q 15.

Correct2

Incorrect-0.5

When 0.252525.........is converted into fraction, then find the result.

{tex} \frac{25}{99} {/tex}

B

{tex} \frac{25}{90} {/tex}

C

{tex} \frac{25}{999} {/tex}

D

{tex} \frac{25}{9999} {/tex}

Explanation

0.252525 = {tex} 0.\bar{25} = \frac{25}{99} {/tex}

Q 16.

Correct2

Incorrect-0.5

Out of the fractions {tex} \frac{5}{7},\frac{4}{9},\frac{6}{11}, \frac{2}{5} and \frac{3}{4} {/tex} what is the difference between the largest and the smallest fractions?

A

{tex} \frac{6}{13} {/tex}

B

{tex} \frac{11}{18} {/tex}

C

{tex} \frac{7}{18} {/tex}

None of the above

Explanation

{tex} \frac{5}{7} = 0.71, \frac{4}{9} = 0.44, \frac{6}{11} = 0.54, \frac{2}{5} = 0.40, \frac{3}{4} = 0.75 {/tex}

Here, the largest fraction = {tex} \frac{3}{4} {/tex}

and the smallest fraction = {tex} \frac{2}{5} {/tex}

So, required difference = {tex} \frac{3}{4} - \frac{2}{5} = \frac{15 - 8}{20} = \frac{7}{20} {/tex}

Q 17.

Correct2

Incorrect-0.5

If the numerator of a fraction is increased by 200% and the denominator of the fraction is increased by 150%, the resultant fraction is 9/35. What is the original fraction?

A

{tex} \frac{3}{10} {/tex}

B

{tex} \frac{2}{15} {/tex}

C

{tex} \frac{3}{16} {/tex}

None of the above

Explanation

Let the original fraction be {tex} \frac{x}{y} {/tex}

Numerator is increased by 200%.

Therefore, Numerator = x + 200% of x

= {tex} x + \frac{200x}{100} {/tex}

= {tex} \frac{100x + 200x}{100} {/tex}

= {tex} \frac{300x}{100} {/tex}

and denominator of the fraction is by 150%.

Denominator = {tex} y + \frac{150y}{100} {/tex}

= {tex} \frac{100y + 15y}{100} {/tex}

= {tex} \frac{250y}{100} {/tex}

Then, according to the question,

{tex} \frac{300x/100}{250y/100} = \frac{9}{35} {/tex}

{tex} \frac{300x}{250y} = \frac{9}{35} {/tex}

Therefore, {tex} \frac{x}{y} = \frac{9}{35} \times \frac{250}{300} = \frac{3}{14} {/tex}

Q 18.

Correct2

Incorrect-0.5

A, B, C and D purchase a gift worth Rs.60. A pays {tex} \frac{1}{2} {/tex} of what others are paying, B pays {tex} \frac{1}{3} {/tex}rd of what others are paying and C pays {tex} \frac{1}{4} {/tex}th of what others are paying. What is the amount paid by D?

A

14

B

15

C

16

13

Explanation

Let A, B, C and D pay Rs.x, Rs.y, Rs.z andrs.a

According to the question,

{tex} x = \frac{1}{2} \left(y+z+a\right) {/tex} ...(i)

{tex} y = \frac{1}{3} \left(x+z+a\right) {/tex} ...(ii)

{tex} z = \frac{1}{4} \left(x+y+a\right) {/tex} ...(iii)

Also, x+ y+ z+a=60

Now, put the value of x + y + a = 4z

Then, 4z+ z = 60 => 52z = 60

Therefore, z = 12

Similarly, on putting the value of x + z + a = 3y, we get

3y + y = 60 => 4y = 60

Therefore, y = 15

Again, on putting the value of (y+ z+a) = 2x, we get

2x+ x=60 => 3x = 60

Therefore, x = 20

Now, x+ y+ z+a = 60

On putting the value of x,y and z, we get

12 + 15 + 20 + a = 60

Therefore, a = 60 - 47 = Rs.13

Q 19.

Correct2

Incorrect-0.5

{tex} \frac{1}{4} {/tex}th of number of boys and {tex} \frac{3}{8} {/tex}th of number of girls participated in annual sports of the school. What fractional part of total number of students participated?

A

32%

B

20%

C

36%

Data inadequate

Explanation

Total number of students participated

= {tex} \frac{1}{4}B + \frac{3}{8}G {/tex}

Therefore, Required percentage

= = {tex} \left(\frac{\frac{1}{4}B + \frac{3}{8}G} {B+G}\right) \times 100\% {/tex}

Clearly, given data is inadequate.

Q 20.

Correct2

Incorrect-0.5

The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, then the denominator becomes eight times the numerator, then find the fraction.

{tex} \frac{3}{7} {/tex}

B

{tex} \frac{4}{8} {/tex}

C

{tex} \frac{2}{7} {/tex}

D

{tex} \frac{3}{8} {/tex}

Explanation

Let denominator of fraction = x

Then, numerator = x - 4

Therefore, Fraction = {tex} \frac{x - 4}{x} {/tex}

Now, according to the question,

{tex} 8 \left[\left(x - 4\right) - 2 \right] = \left(x + 1\right) {/tex}

{tex} \left(x - 4\right) - 2 = \frac{ \left(x + 1\right) }{8} {/tex}

=> 8x - 48 = x + 1

=> 8x - x = 48 + 1

=> 7x = 49

=> x = {tex} \frac{49}{7} {/tex}

Therefore, x = 7

Therefore, Fraction = {tex} \frac{7 - 4}{7} = \frac{3}{7} {/tex}

Q 21.

Correct2

Incorrect-0.5

The greatest among the numbers {tex} \sqrt[4]{2}, \sqrt[5]{3}, \sqrt[10]{6} \ and \ \sqrt[20]{15} {/tex} is

A

{tex} \sqrt[20]{15} {/tex}

B

{tex} \sqrt[4]{2} {/tex}

{tex} \sqrt[5]{3} {/tex}

D

{tex} \sqrt[10]{6} {/tex}

Explanation

LCM of 4, 5, 10 and 20 = 20

{tex} \sqrt[4]{2} = \left(2\right)^{\frac{1}{4}} = \left(2^{5}\right)^{\frac{1}{20}} = \left(32\right)^{\frac{1}{20}} {/tex}

{tex} \sqrt[5]{3} = \left(3\right)^{\frac{1}{5}} = \left(3^{4}\right)^{\frac{1}{20}} = \left(81\right)^{\frac{1}{20}} {/tex}

{tex} \sqrt[10]{6} = \left(6\right)^{\frac{1}{10}} = \left(6^{2}\right)^{\frac{1}{20}} = \left(36\right)^{\frac{1}{2}} {/tex}

{tex} \sqrt[20]{15} = \left(15\right)^{\frac{1}{20}} {/tex}

The greatest number is {tex} \left(81\right)^{\frac{1}{20}} i.e. \sqrt[5]{3} {/tex}

Q 22.

Correct2

Incorrect-0.5

If the fraction {tex} \frac{a}{b} {/tex} is positive, then which of the following must be true?

A

a > 0

B

b > 0

ab > 0

D

a + b > 0

Explanation

If the fraction {tex} \frac{a}{b} {/tex} is positive, then ab > 0 must be true.

Q 23.

Correct2

Incorrect-0.5

If 1.5 x = 0.04 y, then find the value {tex} \left(\frac{y-x}{y + x}\right) {/tex}

A

{tex} \frac{730}{77} {/tex}

{tex} \frac{73}{77}{/tex}

C

{tex} \frac{73}{770}{/tex}

D

{tex} \frac{703}{77}{/tex}

Explanation

Given, 1.5x = 0.04y

{tex} \frac{y}{x} = \frac{1.5}{0.004} = \frac{150}{4} = \frac{75}{2} {/tex}

{tex} \left(\frac{y - x}{y + x}\right) = \left(\frac{\frac{y}{x}-1}{\frac{y}{x}+1}\right) = \left(\frac{\frac{75}{2}-1}{\frac{75}{2}+1}\right) = \frac{73}{77} {/tex}

Q 24.

Correct2

Incorrect-0.5

If 0.764y = 1.236x, then what is the value of {tex} \frac{y - x}{y + x} {/tex}?

A

0.764

0.236

C

2

D

0.472

Explanation

Given, 1.5x = 0.04y

{tex} \frac{y}{x} = \frac{1.236}{0.764} = \frac{309}{191} {/tex}

{tex} \left(\frac{y - x}{y + x} \right) = \left(\frac{\frac{y}{x}-1}{\frac{y}{x}+1}\right) = \left(\frac{\frac{309}{191}-1}{\frac{309}{191}+1}\right) = \left(\frac{\frac{118}{191}}{\frac{500}{191}}\right) = \frac{118}{500} {/tex}= 0.236

Q 25.

Correct2

Incorrect-0.5

Find the HCF of {tex} \frac{5}{6} {/tex},{tex} \frac{5}{18} {/tex} and {tex} \frac{25}{32} {/tex}

0.052

B

0.698

C

0.75

D

Cannot be determined

Explanation

{tex} HCF \ of \ \frac{5}{8}, \frac{15}{8}, \frac{25}{32} {/tex}

= {tex} \frac{HCF \ of \ 5, 15 \ and \ 25} {LCM \ of \ 6, 8 \ and \ 32} = \frac{5}{96} = 0.052{/tex}