On account of the disruption in education due to the corona pandemic, we're are providing a 7-day Free trial of our platform to teachers. Know More →

SSC

Explore popular questions from Polynomials for SSC. This collection covers Polynomials previous year SSC questions hand picked by experienced teachers.

Select Subject

General Awareness

General Intelligence and Reasoning

Quantitative Aptitude

English Comprehension

Statistics

Finance and Economics

Polynomials

Correct Marks 2

Incorrectly Marks -0.5

Q 1. L.C.M. of {tex} x^{4}+x^{2}+1,\ x^{4}-x^{2}-2x-1,\ x^{6}-1 {/tex} is

A

{tex} \left(x^{6}+1\right) \left(x^{4}+x^{2}+1\right) {/tex}

B

{tex} \left(x^{6}-1\right) \left(x^{2}+x+1\right) {/tex}

C

{tex} \left(x^{6}+1\right) \left(x^{2}-x-1\right) {/tex}

{tex} \left(x^{6}-1\right) \left(x^{2}-x-1\right) {/tex}

Explanation

{tex} x^{4}+x^{2}+1 = x^{4}+2x^{2}+1-x^{2} {/tex}
= {tex} \left(x^{2}+1\right)^{2}-x^{2} {/tex}
= {tex} \left(x^{2}+1+x\right) \left(x^{2}+1-x\right) {/tex} ...(i)
{tex} x^{4}-x^{2}-2x-1 = x^{4}- \left(x^{2}+2x+1\right) {/tex}
= {tex} \left(x^{2}\right)^{2}- \left(x+1\right)^{2} {/tex}
= {tex} \left(x^{2}+x+1\right) \left(x^{2}-x-1\right) {/tex} ...(ii)
{tex} x^{6}-1 = \left(x^{3}-1\right) \left(x^{3}+1\right) {/tex}
= {tex} \left(x-1\right) \left(x^{2}+x+1\right) \left(x+1\right) \left(x^{2}-x+1\right) {/tex} ...(iii)
L.C.M. = {tex} \left(x^{3}-1\right) \left(x^{3}+1\right) \left(x^{2}-x-1\right) {/tex}
= {tex} \left(x^{6}-1\right) \left(x^{2}-x-1\right) {/tex}