On account of the disruption in education due to the corona pandemic, we're opening up our platform for teachers, free of cost. Know More →

NEET

Explore popular questions from Oscillations and Waves for NEET. This collection covers Oscillations and Waves previous year NEET questions hand picked by experienced teachers.

Select Subject

Physics

Chemistry

Biology

Oscillations and Waves

Correct Marks 4

Incorrectly Marks -1

Q 1. A particle of mass m executes simple harmonic motion with amplitude {tex} a {/tex} and frequency {tex} v {/tex} . The average kinetic energy {tex} y {/tex} during its motion from the position of equilibrium to the end is

A

2{tex} \pi ^ { 2 } m a ^ { 2 } v ^ { 2 } {/tex}

{tex} \pi ^ { 2 } m a ^ { 2 } v ^ { 2 } {/tex}

C

{tex} \frac { 1 } { 4 } m a ^ { 2 } v ^ { 2 } {/tex}

D

4{tex} \pi ^ { 2 } m a ^ { 2 } y ^ { 2 } {/tex}

Explanation



Correct Marks 4

Incorrectly Marks -1

Q 2. The amplitude of a damped oscillator becomes {tex} \left( \frac { 1 } { 3 } \right) ^ { \text {rd } } {/tex} in 2 seconds. If its amplitude after 6 seconds is {tex} \frac { 1 } { n } {/tex} times the original amplitude, the value of {tex} n {/tex} is

A

{tex} 3 ^ { 2 } {/tex}

{tex} 3 ^ { 3 } {/tex}

C

{tex} \sqrt [ 3 ] { 3 } {/tex}

D

{tex} 2 ^ { 3 } {/tex}

Explanation



Correct Marks 4

Incorrectly Marks -1

Q 3. Assume the earth to be perfect sphere of uniform density. If a body is dropped at one end of a tunnel dug along a diameter of the earth (remember that inside the tunnel the force on the body is -k times the displacement from the centre, k being a constant), it (body) will

A

reach the earth's centre and stay there

B

go through the tunnel and comes out at the other end

oscillate simple harmonically in the tunnel

D

stay somewhere between the earth's centre and one of the ends of tunnel.

Explanation





Correct Marks 4

Incorrectly Marks -1

Q 4. A particle undergoes simple harmonic motion having time period T. The time taken in {tex}3 / 8 {/tex} th oscillation is

A

{tex} \frac { 3 } { 8 } \mathrm { T } {/tex}

B

{tex} \frac { 5 } { 8 } \mathrm { T } {/tex}

{tex} \frac { 5 } { 12 } \mathrm { T } {/tex}

D

{tex} \frac { 7 } { 12 } \mathrm { T } {/tex}

Explanation



Correct Marks 4

Incorrectly Marks -1

Q 5. A particle is executing simple harmonic motion with amplitude A. When the ratio of its kinetic energy to the potential energy is {tex} \frac { 1 } { 4 } , {/tex} its displacement from its mean position is

{tex} \frac { 2 } { \sqrt { 5 } } \mathrm { A } {/tex}

B

{tex} \frac { \sqrt { 3 } } { 2 } \mathrm { A } {/tex}

C

{tex} \frac { 3 } { 4 } \mathrm { A } {/tex}

D

{tex} \frac { 1 } { 4 } \mathrm { A } {/tex}

Explanation


Correct Marks 4

Incorrectly Marks -1

Q 6. The length of a simple pendulum executing simple harmonic motion is increased by 21{tex} \% {/tex} . The percentage increase in the time period of the pendulum of increased length is

A

1{tex} \% {/tex}

B

21{tex} \% {/tex}

C

42{tex} \% {/tex}

10{tex} \% {/tex}

Explanation



Correct Marks 4

Incorrectly Marks -1

Q 7. The time period of a mass suspended from a spring is {tex} T . {/tex} If the spring is cut into four equal parts and the same mass is suspended from one of the parts, then the new time period will be

A

2{tex} T {/tex}

B

{tex} \frac { T } { 4 } {/tex}

C

2

{tex} \frac { T } { 2 } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 8. Two simple harmonic motions act on a particle. These harmonic motions are {tex} x = A \cos ( \omega t + \delta ) , y = A \cos ( \omega t + \alpha ) {/tex} when {tex} \delta = \alpha + \frac { \pi } { 2 } , {/tex} the resulting motion is

A

a circle and the actual motion is clockwise

B

an ellipse and the actual motion is counterclockwise

C

an elllipse and the actual motion is clockwise

a circle and the actual motion is counter clockwise

Explanation


Correct Marks 4

Incorrectly Marks -1

Q 9. A point mass oscillates along the {tex} x {/tex} -axis according to the law {tex} x = x _ { 0 } \cos ( \omega t - \pi / 4 ) . {/tex} If the acceleration of the particle is written as {tex} a = A \cos ( \omega t - \delta ) , {/tex} then

{tex} A = x _ { 0 } \omega ^ { 2 } , \delta = 3 \pi / 4 {/tex}

B

{tex} A = x _ { 0 } , \delta = - \pi / 4 {/tex}

C

{tex} A = x _ { 0 } \omega ^ { 2 } , \delta = \pi / 4 {/tex}

D

{tex} A = x _ { 0 } \omega ^ { 2 } , \delta = - \pi / 4 {/tex}

Explanation





Correct Marks 4

Incorrectly Marks -1

Q 10. A mass {tex} M {/tex} is suspended from a spring of negligible mass. The spring is pulled a little and then released so that the mass executes SHM of time period {tex} T . {/tex} If the mass is increased by {tex} \mathrm { m } , {/tex} the time period becomes {tex} \frac { 5 T } { 3 } . {/tex} Then the ratio of {tex} \frac { m } { M } {/tex}

A

{tex} \frac { 3 } { 5 } {/tex}

B

{tex} \frac { 25 } { 9 } {/tex}

{tex} \frac { 16 } { 9 } {/tex}

D

{tex} \frac { 5 } { 3 } {/tex}

Explanation






Correct Marks 4

Incorrectly Marks -1

Q 11. A body oscillates with a simple harmonic motion having amplitude 0.05{tex} \mathrm { m } {/tex} . At a certain instant of time, its displacement is 0.01{tex} \mathrm { m } {/tex} and acceleration is {tex} 1.0 \mathrm { m } / \mathrm { s } ^ { 2 } . {/tex} The period of oscillation is

A

{tex}0.1 \mathrm { s } {/tex}

B

{tex} 0.2\mathrm { s } {/tex}

C

{tex} \frac { \pi } { 10 } \mathrm s {/tex}

{tex}\mathrm{\frac{\pi}{5}s}{/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 12. The particle executing simple harmonic motion has a kinetic energy {tex} K _ { 0 } \cos ^ { 2 } \omega t . {/tex} The maximum values of the potential energy and the total energy are respectively

A

{tex} K _ { 0 } / 2 {/tex} and {tex} K _ { 0 } {/tex}

B

{tex} K _ { 0 } {/tex} and 2{tex} K _ { 0 } {/tex}

{tex} K _ { 0 } {/tex} and {tex} K _ { 0 } {/tex}

D

0 and 2{tex} K _ { 0 } {/tex}

Explanation





Correct Marks 4

Incorrectly Marks -1

Q 13. A simple pendulum attached to the ceiling of a stationary lift has a time period {tex}\mathrm { T } {/tex}. The distance {tex} y {/tex} covered by the lift moving upwards varies with time {tex} t {/tex} as {tex} y = t ^ { 2 } {/tex} where {tex} y {/tex} is in metres and {tex} t {/tex} in seconds. If {tex} \mathrm { g } = 10 \mathrm { m } / \mathrm { s } ^ { 2 } {/tex} , the time period of pendulum will be

A

{tex} \sqrt { \frac { 4 } { 5 } } \mathrm { T } {/tex}

{tex} \sqrt { \frac { 5 } { 6 } } \mathrm { T } {/tex}

C

{tex} \sqrt { \frac { 5 } { 4 } } \mathrm { T } {/tex}

D

{tex} \sqrt { \frac { 6 } { 5 } } \mathrm { T } {/tex}

Explanation


Correct Marks 4

Incorrectly Marks -1

Q 14. A particle moves with simple harmonic motion in a straight line. In first {tex} \tau {/tex} s, after starting from rest it travels a distance a, and in next {tex} \tau {/tex} s it travels 2a, in same direction, then:

A

amplitude of motion is 3{tex} \mathrm { a } {/tex}

B

time period of oscillations is 8{tex} \tau {/tex}

C

amplitude of motion is 4{tex} \mathrm { a } {/tex}

time period of oscillations is 6{tex} \tau {/tex}

Explanation





Correct Marks 4

Incorrectly Marks -1

Q 15. In damped oscillations, the amplitude of oscillations is reduced to one-third of its inital value {tex} a _ { 0 } {/tex} at the end of 100 oscillations. When the oscillator completes 200 oscillations, its amplitude must be

A

{tex} a _ { 0 } / 2 {/tex}

B

{tex} a _ { 0 } / 4 {/tex}

C

{tex} a _ { 0 } / 6 {/tex}

{tex} a _ { 0 } / 9 {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 16. The spring constant from the adjoining combination of springs is

A

{tex} \mathrm K {/tex}

B

{tex} \mathrm { 2K } {/tex}

{tex} \mathrm { 4K } {/tex}

D

{tex} \mathrm { 5K } / 2 {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 17. A simple harmonic wave having an amplitude a and time period {tex} \mathrm { T } {/tex} is represented by the equation {tex} y = 5 \sin \pi ( t + 4 ) m {/tex}
Then the value of amplitude {tex} (a) {/tex} in metre and time period {tex} ( \mathrm { T } ) {/tex} in second are

A

{tex} a = 10 , T = 2 {/tex}

B

{tex} a = 5 , T = 1 {/tex}

C

{tex} a = 10 , T = 1 {/tex}

{tex} a = 5 , T = 2 {/tex}

Explanation



Correct Marks 4

Incorrectly Marks -1

Q 18. A particle moves such that its acceleration {tex} { ' } \mathrm { a }{ ' } {/tex} is given by a {tex} = - \mathrm { zx } {/tex} where {tex} \mathrm { x } {/tex} is the displacement from equilibrium position and {tex} \mathrm { z } {/tex} is constant. The period of oscillation is

A

2{tex} \pi / 2 {/tex}

2{tex} \pi / \sqrt { z } {/tex}

C

{tex} \sqrt { 2 \pi / z } {/tex}

D

2{tex} \sqrt { \pi / z } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 19. The displacement of an object attached to a spring and executing simple harmonic motion is given by {tex} x = 2 \times 10 ^ { - 2 } {/tex}cos {tex} \pi t {/tex} metre. The time at which the maximum speed first occurs is

A

0.25 sec

0.5 sec

C

0.75 sec

D

0.125 sec

Explanation




Correct Marks 4

Incorrectly Marks -1

Q 20. A tunnel has been dug through the centre of the earth and a ball is released in it. It executes S.H.M. with time period

A

42 minutes

B

1 day

C

1 hour

84.6 minutes

Explanation



Correct Marks 4

Incorrectly Marks -1

Q 21. The displacement equation of a particle is {tex} x = 3 \sin 2 t + 4 \cos 2 t {/tex} . The amplitude and maximum velocity will be respectively

{tex} 5,10 {/tex}

B

{tex} 3,2 {/tex}

C

{tex} 4,2 {/tex}

D

{tex} 3,4 {/tex}

Explanation



Correct Marks 4

Incorrectly Marks -1

Q 22. A body of mass 0.01 kg executes simple harmonic motion about x = 0 under the influence of a force as shown in figure.The time period of SHM is

A

1.05{tex} \mathrm { s } {/tex}

B

0.52{tex} \mathrm { s } {/tex}

C

0.25

0.03{tex} \mathrm { s } {/tex}

Explanation

Slope of F-x curve = -k = - {tex} \large \frac {80}{0.2} {/tex} = 400N/m Time period, {tex}T{/tex} = {tex} 2\pi \sqrt {\frac {m}{k}} {/tex} = 0.03 s

Correct Marks 4

Incorrectly Marks -1

Q 23. Two oscillators are started simultaneously in same phase. After 50 oscillations of one, they get out of phase by {tex} \pi {/tex} , that
is half oscillation. The percentage difference of frequencies of the two oscillators is nearest to

A

2{tex} \% {/tex}

1{tex} \% {/tex}

C

0.5{tex} \% {/tex}

D

0.25{tex} \% {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 24. If the mass shown in figure is slightly displaced and then let go, then the system shall oscillate with a time period of

A

2{tex} \pi \sqrt { \frac { \mathrm { m } } { 3 \mathrm { k } } } {/tex}

2{tex} \pi \sqrt { \frac { 3 \mathrm m } { 2 \mathrm k } } {/tex}

C

2{tex} \pi \sqrt { \frac { 2 \mathrm { m } } { 3 \mathrm { k } } } {/tex}

D

2{tex} \pi \sqrt { \frac { 3 \mathrm { k } } { \mathrm { m } } } {/tex}

Explanation


Correct Marks 4

Incorrectly Marks -1

Q 25. Starting from the origin a body oscillates simple harmonically with a period of 2{tex} \mathrm { s } {/tex} . After what time will its kinetic energy be 75{tex} \% {/tex} of the total energy?

{tex} \frac { 1 } { 6 } \mathrm { s }{/tex}

B

{tex} \frac { 1 } { 4 } \mathrm { s } {/tex}

C

{tex} \frac { 1 } { 3 } \mathrm { s } {/tex}

D

{tex} \frac { 1 } { 12 } \mathrm { s } {/tex}

Explanation