NEET > Kinematics

Explore popular questions from Kinematics for NEET. This collection covers Kinematics previous year NEET questions hand picked by popular teachers.


Q 1.    

Correct4

Incorrect-1

A particle starts moving rectilinearly at time {tex} \mathrm { t } = 0 {/tex} such that its velocity {tex} \mathrm { v } {/tex} changes with time {tex} \mathrm { t } {/tex} according to the equation {tex} \mathrm { v } = \mathrm { t } ^ { 2 } - \mathrm { t } {/tex} where {tex} \mathrm { t } {/tex} is in seconds and {tex} \mathrm { v } {/tex} is in {tex} \mathrm { m } / \mathrm { s } {/tex} . Find the time interval for which the particle retards.

{tex} \frac { 1 } { 2 } < t < 1 {/tex}

B

{tex} \frac { 1 } { 2 } > t > 1 {/tex}

C

{tex} \frac { 1 } { 4 } < t < 1 {/tex}

D

{tex} \frac { 1 } { 2 } < t < \frac { 3 } { 4 } {/tex}

Explanation

Q 2.    

Correct4

Incorrect-1

The co-ordinates of a moving particle at any time {tex}'t'{/tex} are given by {tex} x = \alpha t ^ { 3 } {/tex} and {tex} y = \beta t ^ { 3 } . {/tex} The speed of the particle at time {tex} 't'{/tex} is given by

A

3{tex} t \sqrt { \alpha ^ { 2 } + \beta ^ { 2 } } {/tex}

3{tex} t ^ { 2 } \sqrt { \alpha ^ { 2 } + \beta ^ { 2 } } {/tex}

C

{tex} t ^ { 2 } \sqrt { \alpha ^ { 2 } + \beta ^ { 2 } } {/tex}

D

{tex} \sqrt { \alpha ^ { 2 } + \beta ^ { 2 } } {/tex}

Explanation

Q 3.    

Correct4

Incorrect-1

If a car covers {tex} 2/ 5 ^ { \text {th } } {/tex} of the total distance with {tex} v _ { 1 } {/tex} speed and {tex} 3/ 5 ^ { \text {th } } {/tex} distance with {tex} v _ { 2 } {/tex} then average speed is

A

{tex} \frac { 1 } { 2 } \sqrt { v _ { 1 } v _ { 2 } } {/tex}

B

{tex} \frac { v _ { 1 } + v _ { 2 } } { 2 } {/tex}

C

{tex} \frac { 2 v _ { 1 } v _ { 2 } } { v _ { 1 } + v _ { 2 } } {/tex}

{tex} \frac { 5 v _ { 1 } v _ { 2 } } { 3 v _ { 1 } + 2 v _ { 2 } } {/tex}

Explanation

Q 4.    

Correct4

Incorrect-1

Choose the correct statements from the following.

The magnitude of instantaneous velocity of a particle is equal to its instantaneous speed

B

The magnitude of the average velocity in an interval is equal to its average speed in that interval.

C

It is possible to have a situation in which the speed of the particle is never zero but the average speed in an interval is zero.

D

It is possible to have a situation in which the speed of particle is zero but the average speed is not zero.

Explanation

Q 5.    

Correct4

Incorrect-1

A particle located at {tex} x = 0 {/tex} at time {tex} t = 0 {/tex} , starts moving along with the positive {tex} x {/tex} -direction with a velocity {tex} 'v' {/tex} that varies as {tex} v = \alpha \sqrt { x } {/tex} . The displacement of the particle varies with time as

{tex} t ^ { 2 } {/tex}

B

{tex} t {/tex}

C

{tex} t ^ { 1 / 2 } {/tex}

D

{tex} t ^ { 3 } {/tex}

Explanation

Q 6.    

Correct4

Incorrect-1

Figure here gives the speed-time graph for a body. The displacement travelled between {tex} t = 1.0 {/tex} second and {tex} t = 7.0 {/tex} second is nearest to

A

1.5{tex} \mathrm { m } {/tex}

B

2{tex} m {/tex}

3{tex} \mathrm { m } {/tex}

D

4{tex} m {/tex}

Explanation

Q 7.    

Correct4

Incorrect-1

A particle is moving in a straight line with initial velocity and uniform acceleration {tex} a {/tex} . If the sum of the distance travelled in {tex} t ^ { \text {th } } {/tex} and {tex} ( t + 1 ) ^ { \text {th } } {/tex} seconds is {tex} 100 \mathrm { cm } , {/tex} then its velocity after {tex} t {/tex} seconds, in {tex} \mathrm { cm } / \mathrm { s } , {/tex} is

A

80

50

C

20

D

30

Explanation

Q 8.    

Correct4

Incorrect-1

A thief is running away on a straight road on a jeep moving with a speed of 9{tex} \mathrm { m } / \mathrm { s } {/tex} . A police man chases him on a motor cycle moving at a speed of 10{tex} \mathrm { m } / \mathrm { s } {/tex} . If the instantaneous separation of jeep from the motor cycle is {tex} 100 \mathrm { m } , {/tex} how long will it take for the police man to catch the thief?

A

1 second

B

19 second

C

90 second

100 second

Explanation

Q 9.    

Correct4

Incorrect-1

The displacement {tex} x {/tex} of a particle varies with time according to the relation {tex} x = \frac { a } { b } \left( 1 - e ^ { - b t } \right) . {/tex} Then select the false alternative.

A

At {tex} t = \frac { 1 } { b } , {/tex} the displacement of the particle is nearly {tex} \frac { 2 } { 3 } \left( \frac { a } { b } \right) {/tex}

B

The velocity and acceleration of the particle at {tex}t = 0 {/tex} are a and - ab respectively

C

The particle cannot go beyond {tex} x = \frac { a } { b } {/tex}

The particle will not come back to its starting point at {tex} \mathrm { t } \rightarrow \infty {/tex}

Explanation

Q 10.    

Correct4

Incorrect-1

A metro train starts from rest and in five seconds achieves a speed {tex}108 \mathrm { km } / \mathrm { h } {/tex} . After that it moves with constant velocity and comes to rest after travelling 45{tex} \mathrm { m } {/tex} with uniform retardation. If total distance travelled is {tex} 395 \mathrm { m } , {/tex} find total time of travelling.

A

12.2{tex} \mathrm { s } {/tex}

B

15.3{tex} s {/tex}

C

9{tex} \mathrm { s } {/tex}

17.2{tex} \mathrm { s } {/tex}

Explanation

Q 11.    

Correct4

Incorrect-1

The deceleration experienced by a moving motor boat after its engine is cut off, is given by {tex} \mathrm { d } \mathrm { v } / \mathrm { d } \mathrm { t } = - \mathrm { kv } ^ { 3 } {/tex} where {tex} \mathrm { k } {/tex} is a constant. If {tex} \mathrm { v } _ { 0 } {/tex} is the magnitude of the velocity at cut-off, the magnitude of the velocity at a time {tex} t {/tex} after the cut-off is

{tex} \frac { v _ { 0 } } { \sqrt { \left( 2 v _ { 0 } ^ { 2 } k t + 1 \right) } } {/tex}

B

{tex} v _ { 0 } e ^ { - k t } {/tex}

C

{tex} v _ { 0 } / 2 {/tex}

D

{tex} v _ { 0 } {/tex}

Explanation



Q 12.    

Correct4

Incorrect-1

The velocity of a particle is {tex} v = v _ { 0 } + g t + f t ^ { 2 } {/tex} . If its position is {tex} x = 0 {/tex} at {tex} t = 0 , {/tex} then its displacement after unit time {tex} ( t = 1 ) {/tex} is

A

{tex} v _ { 0 } + g / 2 + f {/tex}

B

{tex} v _ { 0 } + 2 g + 3 f {/tex}

{tex} v _ { 0 } + g / 2 + f / 3 {/tex}

D

{tex} v _ { 0 } + g + f {/tex}

Explanation

Q 13.    

Correct4

Incorrect-1

A man is 45{tex} \mathrm { m } {/tex} behind the bus when the bus starts accelerating from rest with acceleration 2.5{tex} \mathrm { m } / \mathrm { s } ^ { 2 } {/tex} . With what minimum velocity should the man start running to catch the bus?

A

12{tex} \mathrm { m } / \mathrm { s } {/tex}

B

14{tex} \mathrm { m } / \mathrm { s } {/tex}

15{tex} \mathrm { m } / \mathrm { s } {/tex}

D

16{tex} \mathrm { m } / \mathrm { s } {/tex}

Explanation

Q 14.    

Correct4

Incorrect-1

A body is at rest at {tex}x{/tex} = 0. At {tex}t{/tex} = 0, it starts moving in the positive x-direction with a constant acceleration. At the same instant another body passes through {tex}x{/tex} = 0 moving in the positive x-direction with a constant speed. The position of the first body is given by {tex}x_1(t){/tex} after time {tex}'t'{/tex};and that of the second body by {tex}x_2(t){/tex} after the same time interval. Which of the following graphs correctly describes {tex}(x_1 - x_2) {/tex} as a function of time {tex}'t'{/tex}?

A

C

D

Explanation



Q 15.    

Correct4

Incorrect-1

From the top of a building 40{tex} \mathrm { m } {/tex} tall, a boy projects a stone vertically upwards with an initial velocity 10{tex} \mathrm { m } / \mathrm { s } {/tex} such that it eventually falls to the ground. After how long will the stone strike the ground? Take {tex} \mathrm { g } = 10 \mathrm { m } / \mathrm { s } ^ { 2 } {/tex} .

A

1{tex} \mathrm { s } {/tex}

B

2{tex} \mathrm { s } {/tex}

C

3{tex} s {/tex}

4{tex} \mathrm { s } {/tex}

Explanation

Q 16.    

Correct4

Incorrect-1

Two bodies begin to fall freely from the same height but the second falls T second after the first. The time (after which the first body begins to fall) when the distance between the bodies equals {tex} \mathrm { L } {/tex} is

A

{tex} \frac { 1 } { 2 } T {/tex}

{tex} \frac { T } { 2 } + \frac { L } { g T } {/tex}

C

{tex} \frac { L } { g T } {/tex}

D

{tex} T + \frac { 2 L } { g T } {/tex}

Explanation

Q 17.    

Correct4

Incorrect-1

Let {tex} A , B , C , D {/tex} be points on a vertical line such that {tex} A B = B C = C D . {/tex} If a body is released from position {tex} A {/tex} , the times of descent through {tex} A B , B C {/tex} and {tex} C D {/tex} are in the ratio.

A

{tex} 1 : \sqrt { 3 } - \sqrt { 2 } : \sqrt { 3 } + \sqrt { 2 } {/tex}

{tex} 1 : \sqrt { 2 } - 1 : \sqrt { 3 } - \sqrt { 2 } {/tex}

C

{tex} 1 : \sqrt { 2 } - 1 : \sqrt { 3 } {/tex}

D

{tex} 1 : \sqrt { 2 } : \sqrt { 3 } - 1 {/tex}

Explanation

Q 18.    

Correct4

Incorrect-1

The water drops fall at regular intervals from a tap 5 m above the ground. The third drop is leaving the tap at an instant when the first drop touches the ground. How far above the ground is the second drop at that instant? {tex} (Take \ g = 10 \ m/s^2){/tex}

A

125{tex} \mathrm { m } {/tex}

B

2.50{tex} \mathrm m {/tex}

3.75{tex} \mathrm { m } {/tex}

D

5.00{tex}\mathrm m {/tex}

Explanation



Q 19.    

Correct4

Incorrect-1

The displacement {tex}'x'{/tex} (in meter) of a particle of mass {tex}'m'{/tex} (in kg) moving in one dimension under the action of a force, is related to time {tex}'t'{/tex} (in sec) by {tex} t = \sqrt { x } + 3 . {/tex} The displacement of the particle when its velocity is zero, will be

A

2{tex} \mathrm m {/tex}

B

4{tex} \mathrm m {/tex}

zero

D

6{tex} \mathrm { m } {/tex}

Explanation

Q 20.    

Correct4

Incorrect-1

A body moving with a uniform acceleration crosses a distance of 65{tex} \mathrm { m } {/tex} in the 5 th second and 105{tex} \mathrm { m } {/tex} in 9 th second. How far will it go in 20{tex} \mathrm { s } {/tex} ?

A

2040{tex} \mathrm { m } {/tex}

B

240{tex} \mathrm { m } {/tex}

2400{tex} \mathrm m {/tex}

D

2004{tex} \mathrm { m } {/tex}

Explanation

Q 21.    

Correct4

Incorrect-1

An automobile travelling with a speed of 60{tex} \mathrm { km } / \mathrm { h } {/tex} , can brake to stop within a distance of 20{tex} \mathrm { m } {/tex} . If the car is going twice as fast i.e., 120{tex} \mathrm { km } / \mathrm { h } {/tex} , the stopping distance will be

A

60{tex} \mathrm { m } {/tex}

B

40{tex} \mathrm { m } {/tex}

C

20{tex} \mathrm { m } {/tex}

80{tex} \mathrm { m } {/tex}

Explanation

Q 22.    

Correct4

Incorrect-1

A particle accelerates from rest at a constant rate for some time and attains a velocity of 8{tex} \mathrm { m } / \mathrm { sec } {/tex} . After wards it decelerates with the constant rate and comes to rest. If the total time taken is 4{tex} \mathrm { sec } {/tex} , the distance travelled is

A

32{tex} \mathrm { m } {/tex}

16{tex} \mathrm m {/tex}

C

4{tex} \mathrm { m } {/tex}

D

None of the above

Explanation



Q 23.    

Correct4

Incorrect-1

The equation represented by the graph below is

A

{tex} y = \frac { 1 } { 2 } g t {/tex}

B

{tex} y = \frac { - 1 } { 2 } g t {/tex}

C

{tex} y = \frac { 1 } { 2 } g t ^ { 2 } {/tex}

{tex} y = \frac { - 1 } { 2 } g t ^ { 2 } {/tex}

Explanation

(d)

Q 24.    

Correct4

Incorrect-1

A particle moves a distance {tex} x {/tex} in time {tex} t {/tex} according to equation {tex} x = ( t + 5 ) ^ { - 1 } . {/tex} The acceleration of particle is proportional to:

{tex} (velocity)^{3/2}{/tex}

B

{tex}(distance) ^ { 2 } {/tex}

C

{tex}(distance) ^ { - 2 } {/tex}

D

(velocity) {tex} ^ { 2 / 3 } {/tex}

Explanation

Q 25.    

Correct4

Incorrect-1

A particle when thrown, moves such that it passes from same height at 2 and 10 seconds, then this height h is:

A

5g

B

g

C

8g

10g

Explanation