Work, Energy and Power
Motion of System of Particles and Rigid Body
Gravitation
Behaviour of Perfect Gas and Kinetic Theory
Current Electricity
Magnetic Effects of Current and Magnetism
Electromagnetic Induction and Alternating Currents
Electromagnetic Waves
Optics
Uncategorized
Physical World and Measurement
Kinematics
Vectors
Laws of Motion
Properties of Bulk Matter
Thermodynamics
Oscillations and Waves
Electrostatics
Dual Nature of Matter and Radiation
Atoms and Nuclei
Electronic Devices & Semiconductor
Communication System

Solutions
Electrochemistry
Chemical Kinetics
Surface Chemistry
General Principles and Processes of Isolation of Elements
Some Basic Concepts of Chemistry
Structure of Atom
Classification of Elements and Periodicity in Properties
Chemical Bonding and Molecular Structure
States of Matter: Gases and Liquids
Equilibrium
Redox Reactions
Hydrogen
s-Block Element (Alkali and Alkaline earth metals)
Some p-Block Elements
Organic Chemistry- Some Basic Principles and Techniques
Hydrocarbons
Environmental Chemistry
Solid State
p-Block Elements
d and f Block Elements
Coordination Compounds
Haloalkanes and Haloarenes
Alcohols, Phenols and Ethers
Aldehydes, Ketones and Carboxylic Acids
Organic Compounds Containing Nitrogen
Amines
Biomolecules
Polymers
Chemistry in Everyday Life
Thermodynamics
Uncategorized
Nuclear Chemistry

Coordinate Geometry (2D)
Mathematical Reasoning
Statistics and Probability
Vectors and Three-Dimensional Geometry
Uncategorized
Sets, Relations and Functions
Permutations and Combinations
Linear Programming
Matrices and Determinants
Logarithm, Indices, Surds and Partial Fraction
Correlation and Regression
Trigonometry
Principle of Mathematical Induction
Complex Numbers and Quadratic Equations
Linear Inequalities
Binomial Theorem
Sequence and Series
Conic Sections
Differential Calculus
Limits, Continuity and Differentiability
Integral Calculus
Differential Equations
Coordinate Geometry
Straight Lines

Statistics and Probability

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 1. A car owner buys petrol at Rs. {tex} 7.50 , {/tex} Rs. 8.00 and Rs. 8.50 per litre for 3 successive years. If he spends Rs. 4000 each year, then the average cost per litre of petrol is

{tex} R s .8 {/tex}

Rs. 8.25

Rs. 7.98

None of these

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 2. The algebraic sum of deviations of a set of values from the arithmetic mean is

0

1

Dependent on mean

None of these

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 3. The mean annual salaries paid to 1000 employees of a company was Rs. 3400 . The mean annual salaries paid to male and female employees were Rs. 200 and Rs. 4200 , respectively. The percentage of males and females employed by the company are

{tex} 50,50 {/tex}

{tex} 40,60 {/tex}

{tex} 70,30 {/tex}

{tex} 20,80 {/tex}

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 4. One of the methods of determining mode is

Mode {tex} = 2 {/tex} median {tex} - 3 {/tex} mean

Mode {tex} = 2 {/tex} median {tex} + 3 {/tex} mean

Mode {tex} = 3 {/tex} median {tex} - 2 {/tex} mean

Mode {tex} = 3 {/tex} median {tex} + 2 {/tex} mean

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 5. The average weight of 25 boys was calculated to be 78.4{tex} \mathrm { kg } {/tex} . It was later discovered that one weight was misread as 69{tex} \mathrm { kg } {/tex} instead of 96{tex} \mathrm { kg } {/tex} . The correct average is

79{tex} \mathrm { kg } {/tex}

79.48{tex} \mathrm { kg } {/tex}

81.32{tex} \mathrm { kg } {/tex}

None of these

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 6. The mean of following frequency table is {tex} 50 . {/tex}

{tex} \begin{array} { | c | c | } \hline \text { Class } & { \text { Frequency } } \\ \hline 0 - 20 & { 17 } \\ { 20 - 40 } & { f _ { 1 } } \\ { 40 - 60 } & { 32 } \\ { 60 - 80 } & { f _ { 2 } } \\ { 80 - 80 } & { 19 } \\ \hline \text { Total } & { 120 } \\ \hline \end{array} {/tex}

The missing frequencies are

{tex} 28,24 {/tex}

{tex} 24,36 {/tex}

{tex} 36,28 {/tex}

None of these

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 7. The A.M. of {tex} n {/tex} numbers of a series is {tex} \overline { X } . {/tex} If the sum of first {tex} ( n - 1 ) {/tex} terms is {tex} k , {/tex} then the {tex} n {/tex} th number is

{tex} \overline { X } - k {/tex}

{tex} n \overline { X } - k {/tex}

{tex} \overline { X } - n k {/tex}

{tex} n \overline { X } - n k {/tex}

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 8. If a variable takes the discrete value {tex} \alpha + 4 , \alpha - 7 / 2 , \alpha - 5 / 2 , \alpha - 3 , {/tex} {tex} \alpha - 2 , \alpha + 1 / 2 , \alpha - 1 / 2 , \alpha + 5 , ( \alpha > 0 ) , {/tex} then the median is

{tex} \alpha - 5 / 4 {/tex}

{tex} \alpha - 1 / 2 {/tex}

{tex} \alpha - 2 {/tex}

{tex} \alpha + 5 / 4 {/tex}

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 9. If a variate {tex} X {/tex} is expressed as a linear function of two variates {tex} U {/tex} and {tex} V {/tex} in the form {tex} X = a U + b V , {/tex} then mean {tex} \overline { X } {/tex} of {tex} X {/tex} is

{tex} a \overline { U } + b \overline { V } {/tex}

{tex} \overline { U } + \overline { V } {/tex}

{tex} b \overline { U } + a \overline { U } {/tex}

None of these

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 10. If {tex} a {/tex} and {tex} b {/tex} are two positive numbers, then

{tex} \mathrm { AM } \leq \mathrm { GM } \geq \mathrm { HM } {/tex}

{tex} \mathrm { AM } \geq \mathrm { GM } \leq \mathrm { HM } {/tex}

{tex} \mathrm { AM } \leq \mathrm { GM } \leq \mathrm { HM } {/tex}

{tex} \mathrm { AM } \geq \mathrm { GM } \geq \mathrm { HM } {/tex}

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 11. You are provided with the following raw data of two variable {tex} x {/tex} and {tex} y . {/tex}

{tex} \Sigma x = 235 , \Sigma y = 250 , \Sigma x ^ { 2 } = 6750 , \Sigma y ^ { 2 } = 6840 {/tex}. Ten pairs of values are included in the survey. The standard deviation are

{tex} 11.08,7.68 {/tex}

{tex} 11.02,7.58 {/tex}

{tex} 11.48,7.48 {/tex}

None of these

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 12. The best average of dealing a qualitative data is

Mean

Median

Mode

Harmonic Mean

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 13. The geometric mean of 6 observations was calculated as {tex} 13 . {/tex} It was later observed that one of the observation was recordedas 28 instead of {tex} 36 . {/tex} The correct geometric mean is

{tex} \left( \frac { 9 } { 7 } \right) ^ { 1 / 6 } {/tex}

3 {tex} \left( \frac { 9 } { 7 } \right) ^ { 1 / 6 } {/tex}

13 {tex} \left( \frac { 9 } { 7 } \right) ^ { 1 / 6 } {/tex}

13

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 14. The mean deviation about the median of the series of batsman in ten innings {tex} 34,38,42,44,46,48,54,55,56,76 {/tex} is

8.5

7.6

8

None of these

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 15. Median of {tex} 16,10,14,11,9,8,12,6,5 {/tex} is

10

12

11

14

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 16. The average marks of boys in a class are {tex}52{/tex} and that of girls is {tex} 42 . {/tex} The average marks of boys and girls combined is {tex} 50 . {/tex} The percentage of boys in the class is

{tex}40{/tex}

{tex}20{/tex}

{tex}80{/tex}

{tex}60{/tex}

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 17. The mean of the numbers {tex} a , b , 8,5,10 {/tex} is {tex}6{/tex} and the variance is {tex} 6.80 . {/tex} Then which one of the following gives possible values of {tex} a {/tex} and {tex} b ? {/tex}

{tex} a = 0 , b = 7 {/tex}

{tex} a = 5 , b = 2 {/tex}

{tex} a = 1 , b = 6 {/tex}

{tex} a = 3 , b = 4 {/tex}

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 18. If the mean deviation of number {tex} 1,1 + d , 1 + 2 d , \ldots , 1 + 100 d {/tex} from their mean is {tex} 255 , {/tex} then {tex} d {/tex} is equal to

{tex}10{/tex}

{tex}20{/tex}

{tex}10.1{/tex}

{tex}20.2{/tex}

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 19. Statement-1: The variance of first {tex} n {/tex} even natural numbers is {tex} \frac { n ^ { 2 } - 1 } { 4 } {/tex} .

Statement-2: The sum of first n natural numbers is {tex} \frac { n ( n + 1 ) } { 2 } {/tex} and the sum of squares of first n natural numbers is {tex} \frac { n ( n + 1 ) ( 2 n + 1 ) } { 6 } {/tex} .

Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement- 1

Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement- 1

Statement-1 is true, Statement- 2 is false

Statement-1 is false, Statement-2 is true

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 20. For two data sets, each of size {tex}5{/tex} , the variances are given to be {tex}4 {/tex} and {tex}5{/tex} and the corresponding means are given to be {tex}2{/tex} and {tex} 4 , {/tex} respectively. The variance of the combined data set is

{tex} \frac { 11 } { 2 } {/tex}

{tex}6{/tex}

{tex} \frac { 13 } { 2 } {/tex}

{tex} \frac { 5 } { 2 } {/tex}

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 21. If the mean deviation about the median of the numbers {tex} a , 2 a {/tex} , {tex} \ldots , 50 a {/tex} is {tex} 50 , {/tex} then {tex} | a | {/tex} equals

{tex}3{/tex}

{tex}4{/tex}

{tex}5{/tex}

{tex}2{/tex}

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 22. All the students of a class performed poorly in Mathematics. The teacher decided to give grace marks of 10 to each of the

students. Which of the following statistical measures will not change even after the grace marks were given?

Median

Mode

Variance

Mean

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 23. A pair of fair dice is thrown independently three times. The probability of getting a score of exactly 9 twice is

{tex}1 / 729 {/tex}

{tex}8 / 9 {/tex}

{tex}8 / 729 {/tex}

{tex} 8/ 243 {/tex}

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 24. Two aeroplanes I and II bomb a target in succession. The probabilities of of I and II scoring a hit correctly are 0.3 and 0.2, respectively. The second plane will bomb only if the first misses the target. The probability that the target is hit by the second plane is

0.06

0.14

0.3

0.7

**Correct Marks**
4

**Incorrectly Marks**
-1

Q 25. An urn contains nine balls of which three are red, four are blue and two are green. Three balls are drawn at random without replacement from the urn. The probability that the three balls have different colour is

{tex} \frac { 2 } { 7 } {/tex}

{tex} \frac { 1 } { 21 } {/tex}

{tex} \frac { 2 } { 23 } {/tex}

{tex} \frac { 1 } { 3 } {/tex}

Your request has been placed successfully.