On account of the disruption in education due to the corona pandemic, we're opening up our platform for teachers, free of cost. Know More →

JEE Main

Explore popular questions from Mathematical Reasoning for JEE Main. This collection covers Mathematical Reasoning previous year JEE Main questions hand picked by experienced teachers.

Select Subject

Physics

Chemistry

Mathematics

Mathematical Reasoning

Correct Marks 4

Incorrectly Marks -1

Q 1. The statement {tex} \mathrm { p } \rightarrow ( \mathrm { q } \rightarrow \mathrm { p } ) {/tex} is equivalent

A

{tex} p \rightarrow ( p \rightarrow q ) {/tex}

{tex} p \rightarrow ( p \vee q ) {/tex}

C

{tex} p \rightarrow ( p \wedge q ) {/tex}

D

{tex} p \rightarrow ( p \leftrightarrow q ) {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 2. Let p be the statement "{tex} x {/tex} is an irrational number", {tex} q {/tex} be the statement "{tex} y {/tex} is a trascendental number", and r be the statement "{tex} x {/tex} is a rational number if {tex} y {/tex} is a transcendental number"
{tex}\mathrm {Statement- 1 } {/tex}: {tex}\mathrm { r } {/tex} is equivalent to either {tex} \mathrm { q } {/tex} or {tex} \mathrm { p } {/tex}.
{tex}\mathrm {Statement- 2 } {/tex}: {tex}\mathrm { r } {/tex} is equivalent to {tex} \left( \mathrm { p } \leftrightarrow ^ {\sim } \mathrm { q } \right) {/tex}

{tex}\mathrm {Statement- 1 } {/tex} is false, Statement {tex} - 2 {/tex} is true

B

{tex}\mathrm {Statement-1} {/tex} is true, {tex}\mathrm {Statement-2} {/tex} is false

C

{tex}\mathrm {Statement-1} {/tex} is true, {tex}\mathrm {Statement-2} {/tex} is true;
{tex}\mathrm {Statement-2} {/tex} is a correct explanation for
{tex}\mathrm {Statement-1} {/tex}

D

{tex}\mathrm {Statement-1} {/tex} is true, {tex}\mathrm {Statement-2} {/tex} is true;
{tex}\mathrm {Statement-2} {/tex} is not a correct explanation for
{tex}\mathrm {Statement-1} {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 3. {tex}\mathrm {Statement-1:} \quad {/tex} {tex}\sim (p{/tex} {tex} \leftrightarrow - \sim q){/tex} is equivalent to {tex} \mathrm { p } \leftrightarrow \mathrm { q } {/tex}.
{tex}\mathrm {Statement- 2 } {/tex} : {tex}\sim ( p{/tex} {tex} \leftrightarrow - {/tex} {tex}\sim q{/tex}) is a tautology.

{tex}\mathrm {Statement-1} {/tex} is true, {tex}\mathrm {Statement-2} {/tex} is false.

B

{tex}\mathrm {Statement-1} {/tex} is false, {tex}\mathrm {Statement-2} {/tex} is true.

C

{tex}\mathrm {Statement-1} {/tex} is true; {tex}\mathrm {Statement-2} {/tex} is true;
{tex}\mathrm {Statement-2} {/tex} is a correct explanation for
{tex}\mathrm {Statement-1.} {/tex}

D

{tex}\mathrm {Statement-1} {/tex} is true, {tex}\mathrm {Statement-2} {/tex} is true;
{tex}\mathrm {Statement-2} {/tex} is not a correct explanation for
{tex}\mathrm {statement-1} {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 4. Let {tex}\mathrm S {/tex} be a non-empty subset of {tex}\mathrm R. {/tex} Consider the following statement:
p: There is a rational number {tex} x \in S {/tex} such that {tex} x > 0 {/tex} which of the following statements is the negation of the statement p?

A

There is a rational number {tex} x \in S {/tex} such that {tex} x \leq 0 {/tex}

B

There is no rational number {tex} x \in S {/tex} such that {tex} x \leq 0 {/tex}

Every rational number {tex} x \in S {/tex} satisfies {tex} x \leq 0 {/tex}

D

{tex} \mathrm { x } \in \mathrm { S } {/tex} and {tex} \mathrm { x } \leq 0 \Rightarrow \mathrm { x } {/tex} is not rational

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 5. The only statement among the followings that is a tautology is :

A

{tex} \mathrm { q } \rightarrow [ \mathrm { p } \wedge ( \mathrm { p } \rightarrow \mathrm { q } ) ] {/tex}

B

{tex} p \wedge ( p \vee q ) {/tex}

C

{tex} \mathrm { p } \vee ( \mathrm { p } \wedge \mathrm { q } ) {/tex}

{tex} [ p \wedge ( p \rightarrow q ) ] \rightarrow q {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 6. {tex} \left( ^ { ^\sim } \mathrm { p } \vee ^ { ^\sim } \mathrm { q } \right) {/tex} is logically equivalent to-

A

{tex} \mathrm { p } \wedge \mathrm { q } {/tex}

B

{tex} ^\sim \mathrm {p \rightarrow q} {/tex}

{tex} \mathrm {p \rightarrow ^\sim q} {/tex}

D

{tex} ^\sim \mathrm {p \rightarrow ^\sim q} {/tex}

Correct Marks 4

Incorrectly Marks -1

Q 7. The statement {tex} ( \mathrm {p \rightarrow ^\sim p} ) \wedge ( ^\sim \mathrm {p \rightarrow p} ) {/tex} is -

A

a tautology

a contradiction

C

neither a tautology nor a contradiction

D

None of these

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 8. Which of the following is correct-

A

{tex} \left( ^\sim _ { \mathrm { p } } \vee ^\sim _ { \mathrm { q } } \right) \equiv ( \mathrm { p } \wedge \mathrm { q } ) {/tex}

{tex} ( \mathrm {p \rightarrow q} ) \equiv ( ^\sim \mathrm {q \rightarrow ^\sim p} ) {/tex}

C

{tex} ^\sim ( \mathrm {p \rightarrow ^\sim q} ) \equiv ( \mathrm {p \wedge ^\sim q} ) {/tex}

D

{tex} ( \mathrm {p \leftrightarrow q ) \equiv ( p \rightarrow q ) \vee ( q \rightarrow p} ) {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 9. The statement {tex} {\sim }( \mathrm {p \rightarrow q} ) \leftrightarrow \left( \sim { \mathrm {p } \vee \sim { q} } \right) {/tex} is -

A

a tautology

B

a contradiction

neither a tautology nor a contradiction

D

both tautology and contradiction

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 10. Which of the following is wrong-

A

{tex} \mathrm { p } \vee ^\sim \mathrm { p } {/tex} is a tautology

B

{tex} ^\sim ( ^\sim \mathrm {p} ) \leftrightarrow \mathrm {p} {/tex} is a tautology

C

{tex} \mathrm { p } \wedge ^\sim \mathrm { p } {/tex} is a contradiction

{tex} ( ( \mathrm {p \wedge p ) \rightarrow q ) \rightarrow p} {/tex} is a tautology

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 11. If statement {tex} \left( \mathrm { p } \vee ^ { \sim } \mathrm { r } \right) \rightarrow ( \mathrm { q } \wedge \mathrm { r } ) {/tex} is false and statement {tex} \mathrm { q } {/tex} is true then statement {tex} \mathrm { p } {/tex} is-

A

True

B

False

may be true or false

D

None of these

Explanation