JEE Main

Explore popular questions from Integral Calculus for JEE Main. This collection covers Integral Calculus previous year JEE Main questions hand picked by experienced teachers.

Mathematics

Integral Calculus

Correct Marks 4

Incorrectly Marks -1

Q 1. Area bounded by lines {tex} y = 2 + x , y = 2 - x {/tex} and {tex} x = 2 {/tex} is

A

3

4

C

8

D

16

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 2. The area bounded by the curves {tex} y = \log _ { e } x {/tex} and {tex} y = \left( \log _ { e } x \right) ^ { 2 } {/tex} is

{tex} 3 - e {/tex}

B

{tex} e - 3 {/tex}

C

{tex} \frac { 1 } { 2 } ( 3 - e ) {/tex}

D

{tex} \frac { 1 } { 2 } ( e - 3 ) {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 3. The area enclosed by the parabolas {tex} y = x ^ { 2 } - 1 {/tex} and {tex} y = 1 - x ^ { 2 } {/tex} is

A

1{tex} / 3 {/tex}

B

2{tex} / 3 {/tex}

C

4{tex} / 3 {/tex}

8{tex} / 3 {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 4. The area enclosed between the parabolas {tex} y ^ { 2 } = 4 x {/tex} and {tex} x ^ { 2 } = 4 y {/tex} is

A

{tex} \frac { 14 } { 3 } {/tex} sq. units

B

{tex} \frac { 3 } { 4 } {/tex} sq.units

C

{tex} \frac { 3 } { 16 } {/tex} sq. units

{tex} \frac { 16 } { 3 } {/tex} sq. units

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 5. The area bounded by the curves {tex} y ^ { 2 } = 8 x {/tex} and {tex} y = x {/tex} is

A

{tex} \frac { 128 } { 3 } {/tex} sq. units

{tex} \frac { 32 } { 3 } {/tex} sq. units

C

{tex} \frac { 64 } { 3 } {/tex} sq. units

D

{tex}32{/tex} sq.units

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 6. The area bounded by the parabola {tex} y ^ { 2 } = 4 a x , {/tex} its axis and two ordinates {tex} x = 4 , x = 9 {/tex} is

A

4{tex} a ^ { 2 } {/tex}

B

4{tex} a ^ { 2 } \cdot 4 {/tex}

C

4{tex} a ^ { 2 } ( 9 - 4 ) {/tex}

{tex} \frac { 152 \sqrt { a } } { 3 } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 7. The area of the region consisting of points {tex} ( x , y ) {/tex} satisfying {tex} | x \pm y | \leq 2 {/tex} and {tex} x ^ { 2 } + y ^ { 2 } \geq 2 {/tex} is

{tex} 8 - 2 \pi {/tex} sq.units

B

{tex} 4 - 2 \pi {/tex} sq.units

C

{tex} 1 - 2 \pi {/tex} sq.units

D

{tex} 2 \pi \ {/tex} sq.units

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 8. The area of the curve {tex} x y ^ { 2 } = a ^ { 2 } ( a - x ) {/tex} bounded by {tex} y {/tex} -axis is

{tex} \pi a ^ { 2 } {/tex}

B

2{tex} \pi a ^ { 2 } {/tex}

C

3{tex} \pi a ^ { 2 } {/tex}

D

4{tex} \pi a ^ { 2 } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 9. The area of the region bounded by the curves {tex} y = x ^ { 2 } {/tex} and {tex} y = | x | {/tex} is

A

1{tex} / 6 {/tex}

1{tex} / 3 {/tex}

C

{tex}5 / 6 {/tex}

D

{tex} 5/ 3 {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 10. Let {tex} g ( x ) {/tex} be a function defined on {tex} [ - 1,1 ] {/tex} . If the area of the equilateral triangle with two of its vertices at {tex} ( 0,0 ) {/tex} and {tex} [ x , g ( x ) ] {/tex}
is {tex} \frac { \sqrt { 3 } } { 4 } , {/tex} then the function {tex} g ( x ) {/tex} is

{tex} g ( x ) = \pm \sqrt { 1 - x ^ { 2 } } {/tex}

B

{tex} g ( x ) = \sqrt { 1 - x ^ { 2 } } {/tex}

C

{tex} g ( x ) = - \sqrt { 1 - x ^ { 2 } } {/tex}

D

{tex} g ( x ) = \sqrt { 1 + x ^ { 2 } } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 11. The area (in square units) of the region bounded by the curves {tex} y + 2 x ^ { 2 } = 0 {/tex} and {tex} y + 3 x ^ { 2 } = 1 {/tex} is equal to

A

{tex} \frac { 3 } { 5 } {/tex}

B

{tex} \frac { 3 } { 4 } {/tex}

C

{tex} \frac { 1 } { 3 } {/tex}

{tex} \frac { 4 } { 3 } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 12. If a curve {tex} y = a \sqrt { x } + b x {/tex} passes through the point {tex} ( 1,2 ) {/tex} and the area bounded by the curve, line {tex} x = 4 {/tex} and {tex} x {/tex} -axis is 8 sq. units, then

{tex}a=3 , b=-1{/tex}

B

{tex} a = 3 , b = 1 {/tex}

C

{tex} a = - 3 , b = 1 {/tex}

D

{tex} a = - 3 , b = - 1 {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 13. Area under the curve {tex} y = \sin 2 x + \cos 2 x {/tex} between {tex} x = 0 {/tex} and {tex} x = \frac { \pi } { 4 } {/tex} is

A

{tex} 2 {/tex} sq.units

{tex} 1 {/tex} sq.units

C

{tex}3{/tex} sq.units

D

{tex} 4 {/tex} sq.units

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 14. The area between the parabola {tex} y ^ { 2 } = 4 a x {/tex} and {tex} x ^ { 2 } = 8 a y {/tex} is

A

{tex} \frac { 8 } { 3 } a ^ { 2 } {/tex}

B

{tex} \frac { 4 } { 3 } a ^ { 2 } {/tex}

{tex} \frac { 32 } { 3 } a ^ { 2 } {/tex}

D

{tex} \frac { 16 } { 3 } a ^ { 2 } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 15. For {tex} 0 \leq x \leq \pi , {/tex} the area bounded by {tex} y = x {/tex} and {tex} y = x + \sin x {/tex} is

2

B

4

C

2{tex} \pi {/tex}

D

4{tex} \pi {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 16. The area of the region bounded by the {tex} x {/tex} -axis and the curves defined by {tex} y = \tan x , ( - \pi / 3 \leq x \leq \pi / 3 ) {/tex} is

A

{tex} \log \sqrt { 2 } {/tex}

B

{tex} - \log \sqrt { 2 } {/tex}

2 {tex} \log 2 {/tex}

D

{tex} 0 {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 17. The area between the curve {tex} y ^ { 2 } = 4 a x , x {/tex}-axis and the ordinates {tex} x = 0 {/tex} and {tex} x = a {/tex} is

A

{tex} \frac { 4 } { 3 } a ^ { 2 } {/tex}

{tex} \frac { 8 } { 3 } a ^ { 2 } {/tex}

C

{tex} \frac { 2 } { 3 } a ^ { 2 } {/tex}

D

{tex} \frac { 5 } { 3 } a ^ { 2 } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 18. The value of {tex} \sqrt { 2 } \int \frac { \sin x d x } { \sin \left( x - \frac { \pi } { 4 } \right) } {/tex} is

A

{tex} x + \log \left| \cos \left( x - \frac { \pi } { 4 } \right) \right| + c {/tex}

B

{tex} x - \log \left| \sin \left( x - \frac { \pi } { 4 } \right) \right| + c {/tex}

{tex} x + \log \left| \sin \left( x - \frac { \pi } { 4 } \right) \right| + c {/tex}

D

{tex} x - \log \left| \cos \left( x - \frac { \pi } { 4 } \right) \right| + c {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 19. The integral {tex} \int \left( 1 + x - \frac { 1 } { x } \right) e ^ { x + \frac { 1 } { x } } d x {/tex} is equal to

A

{tex} ( x + 1 ) e ^ { x + \frac { 1 } { x } } + c {/tex}

B

{tex} - x e ^ { x + \frac { 1 } { x } } + c {/tex}

C

{tex} ( x - 1 ) e ^ { x + \frac { 1 } { x } } + c {/tex}

{tex} x e ^ { x + \frac { 1 } { x } } + c {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 20. {tex} \int \frac { \sin ^ { 8 } x - \cos ^ { 8 } x } { \left( 1 - 2 \sin ^ { 2 } x \cos ^ { 2 } x \right) } d x {/tex} is equal to

A

{tex} \frac { 1 } { 2 } \sin 2 x + c {/tex}

{tex} - \frac { 1 } { 2 } \sin 2 x + c {/tex}

C

{tex} - \frac { 1 } { 2 } \sin x + c {/tex}

D

{tex} - \sin ^ { 2 } x + c {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 21. The integral {tex} \int \frac { \sin ^ { 2 } x \cos ^ { 2 } x } { \left( \sin ^ { 3 } x + \cos ^ { 3 } x \right) ^ { 2 } } d x {/tex} equal to

A

{tex} \frac { 1 } { \left( 1 + \cot ^ { 3 } x \right) } + c {/tex}

{tex} - \frac { 1 } { 3 \left( 1 + \tan ^ { 3 } x \right) } + c {/tex}

C

{tex} \frac { \sin ^ { 3 } x } { \left( 1 + \cos ^ { 3 } x \right) } + c {/tex}

D

{tex} - \frac { \cos ^ { 3 } x } { 3 \left( 1 + \sin ^ { 3 } x \right) } + c {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 22. If {tex} m {/tex} is a non-zero number and {tex} \int \frac { x ^ { 5 m - 1 } + 2 x ^ { 4 m - 1 } } { \left( x ^ { 2 m } + x ^ { m } + 1 \right) ^ { 3 } } d x = f ( x ) + c {/tex} then {tex} f ( x ) {/tex} is

A

{tex} \frac { x ^ { 5 m } } { 2 m \left( x ^ { 2 m } + x ^ { m } + 1 \right) ^ { 2 } } {/tex}

{tex} \frac { x ^ { 4 m } } { 2 m \left( x ^ { 2 m } + x ^ { m } + 1 \right) ^ { 2 } } {/tex}

C

{tex} \frac { 2 m \left( x ^ { 5 m } + x ^ { 4 m } \right) } { \left( x ^ { 2 m } + x ^ { m } + 1 \right) ^ { 2 } } {/tex}

D

{tex} \frac { \left( x ^ { 5 m } - x ^ { 4 m } \right) } { 2 m \left( x ^ { 2 m } + x ^ { m } + 1 \right) ^ { 2 } } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 23. The integral {tex} \int \frac { d x } { ( 1 + \sqrt { x } ) \sqrt { x - x ^ { 2 } } } {/tex} is equal to (where {tex} C {/tex} is a constant of integration)

A

{tex} - 2 \sqrt { \frac { 1 + \sqrt { x } } { 1 - \sqrt { x } } } + c {/tex}

B

{tex} - \sqrt { \frac { 1 - \sqrt { x } } { 1 + \sqrt { x } } } + c {/tex}

{tex} - 2 \sqrt { \frac { 1 - \sqrt { x } } { 1 + \sqrt { x } } } + c {/tex}

D

{tex} 2 \sqrt { \frac { 1 + \sqrt { x } } { 1 - \sqrt { x } } } + c {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 24. The value of {tex} \int \frac { 1 + x + x ^ { 2 } } { 1 + x ^ { 2 } } e ^ { \tan ^ { - 1 } x } d x {/tex} is equal to

A

{tex} x ^ { 2 } e ^ { \tan ^ { - 1 } x } {/tex}

B

{tex} e ^ { \tan ^ { - 1 } x } + c {/tex}

{tex} x e ^ { \tan ^ { - 1 } x } + c {/tex}

D

None of these

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 25. {tex} \int \frac { \tan x } { \sqrt { \cos x } } d x {/tex} is equal to

A

{tex} \frac { 2 } { \sqrt { \sin x } } + c {/tex}

{tex} \frac { 2 } { \sqrt { \cos x } } + c {/tex}

C

{tex} \frac { 2 } { \sqrt { \tan x } } + c {/tex}

D

{tex} \frac { 2 } { ( \sin x ) ^ { 3 / 2 } } + c {/tex}