On account of the disruption in education due to the corona pandemic, we're opening up our platform for teachers, free of cost. Know More →

JEE Main

Explore popular questions from Current Electricity for JEE Main. This collection covers Current Electricity previous year JEE Main questions hand picked by experienced teachers.

Select Subject

Physics

Chemistry

Mathematics

Current Electricity

Correct Marks 4

Incorrectly Marks -1

Q 1. If resistance of each wire in the network shown is {tex} r , {/tex} the equivalent resistance between {tex} A {/tex} and {tex} C {/tex} is equal to

A

{tex} r {/tex}

B

{tex} \frac { r } { 2 } {/tex}

{tex} \frac { 2 r } { 3 } {/tex}

D

{tex} \frac { 3 r } { 2 } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 2. In the circuit shown, the potential difference between points {tex} C {/tex} and {tex} B {/tex} will be

A

{tex} ( 8 / 9 ) \mathrm { V } {/tex}

{tex} ( 4 / 3 ) \mathrm { V } {/tex}

C

{tex} ( 2 / 3 ) \mathrm { V } {/tex}

D

4{tex} \mathrm { V } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 3. The current through 2{tex} \Omega {/tex} resistor is

Zero

B

1{tex} \mathrm { A } {/tex}

C

2{tex} \mathrm { A } {/tex}

D

4{tex} \mathrm { A } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 4. The equivalent resistance between points {tex} A {/tex} and {tex} B {/tex} in the circuit shown is

A

4{tex} \Omega {/tex}

B

6{tex} \Omega {/tex}

10{tex} \Omega {/tex}

D

8{tex} \Omega {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 5. In the circuit shown in Fig. 14.11 , the reading of voltmeter will be

A

0.8{tex} \mathrm { V } {/tex}

1.33{tex} \mathrm { V } {/tex}

C

1.6{tex} \mathrm { V } {/tex}

D

2.00{tex} \mathrm { V } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 6. A battery of internal resistance 4{tex} \Omega {/tex} is connected to the network of resistance as shown. In order to give the maximum power to the network, the value of {tex} R {/tex} should be

A

{tex} \frac { 4 } { 9 } \Omega {/tex}

B

{tex} \frac { 8 } { 9 } \Omega {/tex}

2{tex} \Omega {/tex}

D

18{tex} \Omega {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 7. A cell of emf {tex} E {/tex} is connected across a resistance {tex} R {/tex} . The potential difference between the terminals of the cell is found to be {tex} V . {/tex} The internal resistance of the cell must be

A

{tex} \frac { 2 ( E - V ) V } { R } {/tex}

B

{tex} \frac { 2 ( E - V ) R } { E } {/tex}

{tex} \frac { ( E - V ) R } { V } {/tex}

D

{tex} ( E - V ) R {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 8. The equivalent resistance of the network shown in Fig. 14.13 between the base terminals is

A

3{tex} \Omega {/tex}

B

3{tex} \frac { 1 } { 2 } \Omega {/tex}

2{tex} \frac { 2 } { 3 } \Omega {/tex}

D

2{tex} \Omega {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 9. {tex} n {/tex} identical cells, each of emf {tex} \varepsilon {/tex} and internal resistance {tex} r , {/tex} are joined in series to form a closed circuit as shown. The potential difference across any one cell is

Zero

B

{tex} E {/tex}

C

{tex} \frac { \mathcal { E } } { n } {/tex}

D

{tex} \frac { n - 1 } { n } \varepsilon {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 10. In the given circuit, it is observed that the current {tex} I {/tex} is independent of the value of the resistance {tex} R _ { 6 } . {/tex} Then the resistance value must satisfy

A

{tex} R _ { 1 } R _ { 2 } R _ { 5 } = R _ { 3 } R _ { 4 } R _ { 6 } {/tex}

B

{tex} \frac { 1 } { R _ { 5 } } + \frac { 1 } { R _ { 6 } } = \frac { 1 } { \left( R _ { 1 } + R _ { 2 } \right) } + \frac { 1 } { \left( R _ { 3 } + R _ { 4 } \right) } {/tex}

{tex} R _ { 1 } R _ { 4 } = R _ { 2 } R _ { 3 } {/tex}

D

{tex} R _ { 1 } R _ { 3 } = R _ { 2 } R _ { 4 } = R _ { 5 } R _ { 6 } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 11. A set of {tex} n {/tex} identical resistors, each of resistance {tex} R \Omega {/tex} , when connected in series, has an effective resistance of {tex} x {/tex} ohm. When the resistors are connected in parallel, the effective resistance is {tex} y {/tex} ohm. What is the relation between {tex} R , x , {/tex} and {tex} y ? {/tex}

A

{tex} R = \frac { x y } { ( x + y ) } {/tex}

B

{tex} R = ( y - x ) {/tex}

{tex} R = \sqrt { x y } {/tex}

D

{tex} R = ( x + y ) {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 12. A wire with resistance 12{tex} \Omega {/tex} is bent in the form of a circle. The effective resistance between the two points on any diameter of the circle is

A

12{tex} \Omega {/tex}

B

24{tex} \Omega {/tex}

C

6{tex} \Omega {/tex}

3{tex} \Omega {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 13. A wire {tex} l = 8 \mathrm { m } {/tex} long of uniform cross-sectional area {tex} A = 8 \mathrm { mm } ^ { 2 } {/tex} has a conductance of {tex} G = 2.45 \Omega ^ { - 1 } . {/tex} The resistivity of material of the wire will be

A

{tex} 2.1 \times 10 ^ { - 7 } \Omega \mathrm { m } {/tex}

B

{tex} 3.1 \times 10 ^ { - 7 } \Omega \mathrm { m } {/tex}

{tex} 4.1 \times 10 ^ { - 7 } \Omega \mathrm { m } {/tex}

D

{tex} 5.1 \times 10 ^ { - 7 } \Omega \mathrm { m } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 14. The potentiometer wire {tex} A B {/tex} is 600{tex} \mathrm { cm } {/tex} long. At what distance from {tex} A {/tex} should the jockey {tex} J {/tex} touch the wire to get zero deflection in the galvanometer?

320{tex} \mathrm { cm } {/tex}

B

120{tex} \mathrm { cm } {/tex}

C

20{tex} \mathrm { cm } {/tex}

D

450{tex} \mathrm { cm } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 15. In Fig. 14.20, the steady state current in 2{tex} \Omega {/tex} resistance is

A

1.5 {tex}\mathrm A {/tex}

0.9{tex} \mathrm { A } {/tex}

C

0.6{tex} \mathrm { A } {/tex}

D

Zero

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 16. Kirchoff's second law is based on the law of conservation of

A

Momentum

B

Charge

Energy

D

Sum of mass and energy

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 17. In the circuit shown in Fig. 14.27, the heat produced in the 5{tex} \Omega {/tex} resistor due to a current flowing in it is 10 calories per second. The heat produced in the 4{tex} \Omega {/tex} resistor is

A

1 {tex} \mathrm { cal } \mathrm { s } ^ { - 1 } {/tex}

2{tex} \mathrm { cal } \mathrm { s } ^ { - 1 } {/tex}

C

3{tex} \mathrm { cal } \mathrm { s } ^ { - 1 } {/tex}

D

4 {tex} \mathrm { cal } \mathrm { s } ^ { - 1 } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 18. In the circuit shown in Fig. {tex} 14.28 , {/tex} the current through

A

the 3{tex} \Omega {/tex} resistor is 0.50{tex} \mathrm { A } {/tex}

B

the 3{tex} \Omega {/tex} resistor is 0.25{tex} \mathrm { A } {/tex}

C

the 4{tex} \Omega {/tex} resistor is 0.50{tex} \mathrm { A } {/tex}

the 4{tex} \Omega {/tex} resistor is 0.25{tex} \mathrm { A } {/tex}

Correct Marks 4

Incorrectly Marks -1

Q 19. The meter bridge circuit shown in Fig. is balanced when jockey {tex} J {/tex} divides wire {tex} A B {/tex} in two parts {tex} A J {/tex} and {tex} B J {/tex} in the ratio of {tex} 1 : 2 . {/tex} The unknown resistance {tex} Q {/tex} has value

A

1{tex} \Omega {/tex}

3{tex} \Omega {/tex}

C

4{tex} \Omega {/tex}

D

7{tex} \Omega {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 20. Two mole of argon are mixed with one mole of hydrogen, then Cp/Cv for the mixture is nearly

A

1.2

B

1.3

1.4

D

1.5

Explanation

Average degree of freedom
fav =
νmix = 1 + = 1 + = = 1.4
Hence, C is correct Answer.

Correct Marks 4

Incorrectly Marks -1

Q 21. Two identical containers A and B with frictionless pistons contain the same ideal gas at the same temperature and the same volume V. The mass of gas contained in A is and that in B is . The gas in each cylinder is now allowed to expand isothermally to the same final volume 2V. The change in the pressure in A and B are found to be and 1.5 respectively. Then

A

4 = 9

B

2 = 3

3 = 2

D

9 = 4

Explanation

For gas in A,


Putting
We get
Similarly for Gas in B,
From eq. (I) and (II) we get 2 = 3
Hence (C) is the correct.

Correct Marks 4

Incorrectly Marks -1

Q 22. Figure (a), (b), (c) shows three different arrangements of materials 1, 2 and 3 to form a wall. Thermal conductivities are K1/> K2/> K3. The left side of the wall is 20oC higher than the right side. Temperature difference ΔT across the material 1 has following relation, in three cases:

A

ΔTa>ΔTb>ΔTc

ΔTa = ΔTb = ΔTc

C

ΔTa = ΔTb>ΔTc

D

ΔTa = ΔTb<ΔTc

Explanation

All are in series therefore current remains same. Hence temperature difference = (current × thermal resistance) are equal for every case.

Correct Marks 4

Incorrectly Marks -1

Q 23. The temperature drop through a two layer furnace wall is 9000C. Each layer is of equal area of cross-section. Which of the following actions will result in lowering the temperature θ of the interface ?

By increasing the thermal conductivity of outer layer

B

By increasing the thermal conductivity of inner layer

C

By increasing thickness of outer layer

D

By decreasing thickness of inner layer

Explanation

H = rate of heat flow
=
Now 100 - θ =
or θ = 1000 -
= 100 -
Now, we can see that θ can be decreased by increasing thermal conductivity of outer layer (K0) and thickness of inner layer (li).

Correct Marks 4

Incorrectly Marks -1

Q 24. A cylinder of radius R made of material of thermal conductivity K1 is surrounded by a cylindrical shell of inner radius R and outer radius 3R made of a material of thermal conductivity K2. The two ends of the combined system are maintained at two different temperatures. What is the effective thermal conductivity of the system?

A

K1 + K2

C

D

Explanation

= +
= +
Keq =

Correct Marks 4

Incorrectly Marks -1

Q 25. A rod of length l and cross-section area A has a variable thermal conductivity given by K = α T, where α is a positive constant and T is temperature in Kelvin. Two ends of the rod are maintained at temperatures T1 and T2 (T1> T2). Heat current flowing through the rod will be -

A

B

C

Explanation

Heat current i = - KA
idX = - KA dT

⇒ il = - A α
⇒ i = A α