On account of the disruption in education due to the corona pandemic, we're opening up our platform for teachers, free of cost. Know More →

JEE Main

Explore popular questions from Conic Sections for JEE Main. This collection covers Conic Sections previous year JEE Main questions hand picked by experienced teachers.

Select Subject

Physics

Chemistry

Mathematics

Conic Sections

Correct Marks 4

Incorrectly Marks -1

Q 1. Consider a family of circles which are passing through the point {tex} ( - 1,1 ) {/tex} and are tangent to {tex} x {/tex} -axis. If {tex} ( h , k ) {/tex} are the co-ordinates of the centre of the circles, then the set of values of {tex} k {/tex} is given by the interval:

A

{tex} 0 < k < 1 / 2 {/tex}

{tex} k \geq 1 / 2 {/tex}

C

{tex} - 1 / 2 \leq k \leq 1 / 2 {/tex}

D

{tex} k \leq 1 / 2 {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 2. The point diametrically opposite to the point {tex} P ( 1,0 ) {/tex} on the circle {tex} x ^ { 2 } + y ^ { 2 } + 2 x + 4 y - 3 = 0 {/tex} is

A

{tex} ( 3 , - 4 ) {/tex}

B

{tex} ( - 3,4 ) {/tex}

{tex} ( - 3 , - 4 ) {/tex}

D

{tex} ( 3,4 ) {/tex}

Explanation


Correct Marks 4

Incorrectly Marks -1

Q 3. The circle {tex} x ^ { 2 } + y ^ { 2 } = 4 x + 8 y + 5 {/tex} intersects the line {tex} 3 x - 4 y = m {/tex} at two distinct points if

{tex} - 35 < m < 15 {/tex}

B

{tex} 15 < m < 65 {/tex}

C

{tex} 35 < m < 85 {/tex}

D

{tex} - 85 < m < - 35 {/tex}

Explanation


Correct Marks 4

Incorrectly Marks -1

Q 4. The two circles {tex} x ^ { 2 } + y ^ { 2 } = a x {/tex} and {tex} x ^ { 2 } + y ^ { 2 } = c ^ { 2 } ( c > 0 ) {/tex} touch each other if

{tex} | a | = c {/tex}

B

{tex} a = 2 c {/tex}

C

{tex} | a | = 2 c {/tex}

D

{tex} 2 | a | = c {/tex}

Explanation


Correct Marks 4

Incorrectly Marks -1

Q 5. The circle passing through {tex} ( 1 , - 2 ) {/tex} and touching the axis of {tex} x {/tex} at {tex} ( 3,0 ) {/tex} also passes through the point

A

{tex} ( 2 , - 5 ) {/tex}

{tex} ( 5 , - 2 ) {/tex}

C

{tex} ( - 2,5 ) {/tex}

D

{tex} ( - 5,2 ) {/tex}

Explanation


Correct Marks 4

Incorrectly Marks -1

Q 6. Let {tex} C {/tex} be the circle with centre at {tex} ( 1,1 ) {/tex} and radius {tex} = 1 . {/tex} If {tex} T {/tex} is the circle centred at {tex} ( 0 , y ) {/tex} , passing through origin and touching the circle {tex} C {/tex} externally, then the radius of {tex} T {/tex} is equal to

A

{tex} \frac { 1 } { 2 } {/tex}

{tex} \frac { 1 } { 4 } {/tex}

C

{tex} \frac { \sqrt { 3 } } { \sqrt { 2 } } {/tex}

D

{tex} \frac { \sqrt { 3 } } { 2 } {/tex}

Explanation


Correct Marks 4

Incorrectly Marks -1

Q 7. If the point {tex} ( 1,4 ) {/tex} lies inside the circle {tex} x ^ { 2 } + y ^ { 2 } - 6 x - 10 y + p = 0 {/tex} and the circle does not touch or intersect the coordinate axes, then the set of all possible values of {tex} p {/tex} is the interval:

A

{tex} ( 0,25 ) {/tex}

B

{tex} ( 25,39 ) {/tex}

C

{tex} ( 9,25 ) {/tex}

{tex} ( 25,29 ) {/tex}

Explanation



Correct Marks 4

Incorrectly Marks -1

Q 8. The set of all real values of {tex} \lambda {/tex} for which exactly two common tangents can be drawn to the circles {tex} x ^ { 2 } + y ^ { 2 } - 4 x - 4 y + 6 = 0 {/tex} and {tex} x ^ { 2 } + y ^ { 2 } - 10 x - 10 y + \lambda = 0 {/tex} is the interval

A

{tex} ( 12,32 ) {/tex}

{tex} ( 18,42 ) {/tex}

C

{tex} ( 12,24 ) {/tex}

D

{tex} ( 18,48 ) {/tex}

Explanation



Correct Marks 4

Incorrectly Marks -1

Q 9. For the two circles {tex} x ^ { 2 } + y ^ { 2 } = 16 {/tex} and {tex} x ^ { 2 } + y ^ { 2 } - 2 y = 0 {/tex} , there is/are

A

one pair of common tangents

B

two pairs of common tangents

C

three common tangents

no common tangent

Explanation



Correct Marks 4

Incorrectly Marks -1

Q 10. The equation of the circle described on the chord {tex} 3 x + y + 5 = 0 {/tex} of the circle {tex} x ^ { 2 } + y ^ { 2 } = 16 {/tex} as diameter is

{tex} x ^ { 2 } + y ^ { 2 } + 3 x + y - 11 = 0 {/tex}

B

{tex} x ^ { 2 } + y ^ { 2 } + 3 x + y + 1 = 0 {/tex}

C

{tex} x ^ { 2 } + y ^ { 2 } + 3 x + y - 2 = 0 {/tex}

D

{tex} x ^ { 2 } + y ^ { 2 } + 3 x + y - 22 = 0 {/tex}

Explanation




Correct Marks 4

Incorrectly Marks -1

Q 11. The number of common tangents to the circles {tex} x ^ { 2 } + y ^ { 2 } - 4 x {/tex} {tex} - 6 y - 12 = 0 {/tex} and {tex} x ^ { 2 } + y ^ { 2 } + 6 x + 18 y + 26 = 0 {/tex} is

A

2

3

C

4

D

1

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 12. If {tex} y + 3 x = 0 {/tex} is the equation of a chord of the circle {tex} x ^ { 2 } + y ^ { 2 } - 30 x = 0 {/tex} , then the equation of the circle with this chord as diameter is:

A

{tex} x ^ { 2 } + y ^ { 2 } + 3 x + 9 y = 0 {/tex}

{tex} x ^ { 2 } + y ^ { 2 } - 3 x + 9 y = 0 {/tex}

C

{tex} x ^ { 2 } + y ^ { 2 } - 3 x - 9 y = 0 {/tex}

D

{tex} x ^ { 2 } + y ^ { 2 } + 3 x - 9 y = 0 {/tex}

Explanation


Correct Marks 4

Incorrectly Marks -1

Q 13. If a circle passing through the point {tex} ( - 1,0 ) {/tex} touches {tex} y {/tex} -axis at {tex} ( 0,2 ) , {/tex} then the length of the chord of the circle along the {tex} x {/tex} -axis is

A

{tex} \frac { 3 } { 2 } {/tex}

B

{tex} \frac { 5 } { 2 } {/tex}

3

D

5

Explanation


Correct Marks 4

Incorrectly Marks -1

Q 14. Circles are drawn having the sides of triangle {tex} A B C {/tex} as their diameters. Radical centre of the circles is the

A

circumcentre of triangle {tex} A B C {/tex}

B

in-centre of triangle {tex} A B C {/tex}

orthocentre of triangle {tex} A B C {/tex}

D

centroid of triangle {tex} A B C {/tex}

Explanation



Correct Marks 4

Incorrectly Marks -1

Q 15. The circle described on the line joining the points {tex} ( 0,1 ) , ( a , b ) {/tex} as a diameter cuts the {tex} x {/tex} -axis at the points whose abscissa are roots of the equation

A

{tex} x ^ { 2 } + a x + b = 0 {/tex}

{tex} x ^ { 2 } - a x + b = 0 {/tex}

C

{tex} x ^ { 2 } + a x - b = 0 {/tex}

D

{tex} x ^ { 2 } - a x - b = 0 {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 16. The straight line {tex} y = m x + c \ {/tex} cuts the circle {tex} x ^ { 2 } + y ^ { 2 } = a ^ { 2 } {/tex} at the real points if

A

{tex} \sqrt { a ^ { 2 } \left( 1 + m ^ { 2 } \right) } \leq | c | {/tex}

B

{tex} \sqrt { a ^ { 2 } \left( 1 - m ^ { 2 } \right) } \leq | c | {/tex}

{tex} \sqrt { a ^ { 2 } \left( 1 + m ^ { 2 } \right) } \geq | c | {/tex}

D

{tex} \sqrt { a ^ { 2 } \left( 1 - m ^ { 2 } \right) } \geq | c | {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 17. The centre of a circle passing through the points {tex} ( 0,0 ) , ( 1,0 ) {/tex} and touching the circle {tex} x ^ { 2 } + y ^ { 2 } = 9 {/tex} is

A

{tex} \left( \frac { 3 } { 2 } , \frac { 1 } { 2 } \right) {/tex}

B

{tex} \left( \frac { 1 } { 2 } , \frac { 3 } { 2 } \right) {/tex}

C

{tex} \left( \frac { 1 } { 2 } , \frac { 1 } { 2 } \right) {/tex}

{tex} \left( \frac { 1 } { 2 } , - \sqrt { 2 } \right) {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 18. If circles are drawn on the sides of the triangle formed by the lines {tex} x = 0 , y = 0 {/tex} and {tex} x + y = 2 , {/tex} as diameters, then the radical centre of the three circles is

{tex} ( 0,0 ) {/tex}

B

{tex} ( 1,1 ) {/tex}

C

{tex} ( \sqrt { 2 } , 1 ) {/tex}

D

None of these

Explanation


Correct Marks 4

Incorrectly Marks -1

Q 19. The length of the chord cut off by {tex} y = 2 x + 1 {/tex} from the circle {tex} x ^ { 2 } + y ^ { 2 } = 2 {/tex} is

A

{tex} \frac { 5 } { 6 } {/tex}

B

{tex} \frac { 6 } { 5 } {/tex}

{tex} \frac { 6 } { \sqrt { 5 } } {/tex}

D

{tex} \frac { \sqrt { 5 } } { 6 } {/tex}

Explanation


Correct Marks 4

Incorrectly Marks -1

Q 20. The equation of a tangent to the parabola {tex} y ^ { 2 } = 8 x {/tex} is {tex} y = x {/tex} {tex} + 2 . {/tex} The point on this line from which the other tangent to the parabola is perpendicular to the given tangent is

A

{tex} ( - 1,1 ) {/tex}

B

{tex} ( 0,2 ) {/tex}

C

{tex} ( 2,4) {/tex}

{tex} ( - 2,0 ) {/tex}

Explanation


Correct Marks 4

Incorrectly Marks -1

Q 21. Given: A circle, 2{tex}x^2{/tex} + 2{tex}y^2=5{/tex} and a parabola, {tex}y^2{/tex} = {tex}4\sqrt{5}{/tex}x.
Statement-I: An equation of a common tangent to these curves is {tex}y=x+ \sqrt{5}{/tex}
Statement-II: If the line, {tex}y=mx+\frac{\sqrt{5}}{m}{/tex}(m{tex}\neq{/tex}0), is their common tangent,then m satisfies {tex}m^4{/tex}-3{tex}m^2+2 =0.{/tex}

Statement-I is true;Statement- II is not a correct explanation for Statement -I

B

Statement-I is True; Statement - II is False.

C

Statement-II False; Statement-II is True

D

Statement -I is True;Statement - II is True;Statement -II is a correct explanation for Statement -I

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 22. The slope of the line touching both the parabolas {tex} y ^ { 2 } = 4 x {/tex} and {tex} x ^ { 2 } = - 32 y {/tex} is

A

{tex} \frac { 1 } { 8 } {/tex}

B

{tex} \frac { 2 } { 3 } {/tex}

{tex} \frac { 1 } { 2 } {/tex}

D

{tex} \frac { 3 } { 2 } {/tex}

Explanation


Correct Marks 4

Incorrectly Marks -1

Q 23. Let {tex} L _ { 1 } {/tex} be the length of the common chord of the curves {tex} x ^ { 2 } + y ^ { 2 } {/tex} {tex} = 9 {/tex} and {tex} y ^ { 2 } = 8 x , {/tex} and {tex} L _ { 2 } {/tex} be the length of the latus rectus of {tex} y ^ { 2 } = {/tex} 8{tex} x {/tex} . Then

A

{tex} L _ { 1 } > L _ { 2 } {/tex}

B

{tex} L _ { 1 } = L _ { 2 } {/tex}

{tex} L _ { 1 } < L _ { 2 } {/tex}

D

{tex} \frac { L _ { 1 } } { L _ { 2 } } = \sqrt { 2 } {/tex}

Explanation



Correct Marks 4

Incorrectly Marks -1

Q 24. Two tangents are drawn from a point {tex} ( - 2 , - 1 ) {/tex} to the curve, {tex} y ^ { 2 } = {/tex} 4{tex} x {/tex} . If {tex} \alpha {/tex} is the angle between them, then {tex} | \tan \alpha | {/tex} is equal to

A

{tex} \frac { 1 } { 3 } {/tex}

B

{tex} \frac { 1 } { \sqrt { 3 } } {/tex}

C

{tex} \sqrt { 3 } {/tex}

{tex} 3{/tex}

Explanation


Correct Marks 4

Incorrectly Marks -1

Q 25. A chord is drawn through the focus of the parabola {tex} y ^ { 2 } = 6 x {/tex} such that its distance from the vertex of this parabola is {tex} \frac { \sqrt { 5 } } { 2 } {/tex} , then its slope can be

{tex} \frac { \sqrt { 5 } } { 2 } {/tex}

B

{tex} \frac { \sqrt { 3 } } { 2 } {/tex}

C

{tex} \frac { 2 } { \sqrt { 5 } } {/tex}

D

{tex} \frac { 2 } { \sqrt { 3 } } {/tex}

Explanation