On account of the disruption in education due to the corona pandemic, we're are providing a 7-day Free trial of our platform to teachers. Know More →

JEE Advanced

Explore popular questions from Thermodynamics for JEE Advanced. This collection covers Thermodynamics previous year JEE Advanced questions hand picked by experienced teachers.

Select Subject

Mathematics

Physics

Chemistry

Thermodynamics

Correct Marks 4

Incorrectly Marks -1

Q 1. For which change {tex} \Delta \mathrm { H } \neq \Delta \mathrm { E }: {/tex}

A

{tex} \mathrm { H } _ { 2 ( g ) } + \mathrm { I } _ { 2 ( g ) } \rightarrow 2 \mathrm { HI } ( g ) {/tex}

B

{tex} \mathrm { HCl } + \mathrm { NaOH } \rightarrow \mathrm { NaCl } {/tex}

C

{tex}\mathrm {C}_{(s)} +\mathrm {O}_{2(g)}\rightarrow\mathrm {CO}_{2(g)} {/tex}

{tex} \mathrm { N } _ { 2 } ( \mathrm { g } ) + 3 \mathrm { H } _ { 2 } ( \mathrm { g } ) \rightarrow 2 \mathrm { NH } _ { 3 } ( \mathrm { g } ) {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 2. Which one of the following statements is false?

Work is a state function.

B

Temperature is a state function.

C

Change in the state is completely defined when the initial and final states are specified.

D

Work appears at the boundary of the system.

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 3. Two moles of an ideal gas is expanded isothermally and reversibly from 1 litre to 10 litre at 300 K. The enthalpy change (in kJ) for the process is

A

{tex} 11.4 \mathrm { kJ } {/tex}

B

{tex} - 11.4 \mathrm { kJ } {/tex}

{tex} 0 \mathrm { kJ } {/tex}

D

{tex} 4.8 \mathrm { kJ } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 4. The enthalpy of vapourization of liquid is {tex} 30 \mathrm { kJ } \mathrm { mol } ^ { - 1 } {/tex} and entropy of vapourization is {tex} 75 \mathrm { J } \mathrm { mol } ^ { - 1 } \mathrm { K } . {/tex} The boiling point of the liquid at {tex} 1 \mathrm { atm } {/tex} is

A

{tex} 250 \mathrm { K } {/tex}

{tex} 400 \mathrm { K } {/tex}

C

{tex} 450 \mathrm { K } {/tex}

D

{tex} 600 \mathrm { K } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 5. The direct conversion of A to B is difficult, hence it is carried out by the following shown path:

Given {tex} \Delta S _ { ( A \rightarrow C ) } = 50 {/tex} eu., {tex} \Delta S _ { ( C \rightarrow D ) } = 30 {/tex} eu., {tex} \Delta S _ { ( B \rightarrow D ) } = 20 {/tex} e.u. where e.u. is the entropy unit, then {tex} \Delta \mathrm { S } _ { ( \mathrm { A } \rightarrow \mathrm { B } ) } {/tex} is

{tex} + 60 {/tex} e.{tex} { u }{/tex}

B

{tex} + 100 \mathrm { e } . { u } {/tex}

C

{tex} - 60 {/tex} e. {tex}{ u } {/tex}

D

{tex} - 100 \mathrm { e } . { u } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 6. The value of {tex} \log _ { 10 } \mathrm { K } {/tex} for a reaction {tex} \mathrm { A } \rightleftharpoons \mathrm { B } {/tex} is

(Given {tex} : \Delta _ { \mathrm { r } } \mathrm { H } _ { 298 \mathrm { K } } ^ { \circ } = - 54.07 \mathrm { kJ } \mathrm { mol } ^ { - 1 } , \Delta _ { \mathrm { r } } \mathrm { S } _ { 298 \mathrm { K } } ^ { \circ } {/tex} {tex} = 10 \mathrm { JK } ^ { - 1 } \mathrm { mol } ^ { - 1 } {/tex} and {tex} \mathrm { R } = 8.314 \mathrm { JK } ^ { - 1 } \mathrm { mol } ^ { - 1 } ; {/tex} {tex} 2.303 \times 8.314 \times 298 = 5705 ) {/tex}

A

5

10

C

95

D

100

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 7. For the process {tex} \mathrm { H } _ { 2 } \mathrm { O } ( l ) \rightarrow \mathrm { H } _ { 2 } \mathrm { O } ( g ) {/tex} at {tex} T = 100 ^ { \circ } \mathrm { C } {/tex} and {tex}1{/tex} atmosphere pressure, the correct choice is

A

{tex} \Delta S _ { \text {system } } > 0 {/tex} and {tex} \Delta S _ { \text {surroundings } } > 0 {/tex}

{tex} \Delta S _ { \text {system } } > 0 {/tex} and {tex} \Delta S _ { \text {surroundings } } < 0 {/tex}

C

{tex} \Delta S _ { \text {system } } < 0 {/tex} and {tex} \Delta S _ { \text {surroundings } } > 0 {/tex}

D

{tex} \Delta S _ { \text {system } } < 0 {/tex} and {tex} \Delta S _ { \text {surroundings } } < 0 {/tex}

Explanation