On account of the disruption in education due to the corona pandemic, we're are providing a 7-day Free trial of our platform to teachers. Know More →

JEE Advanced

Explore popular questions from Physical World and Measurement for JEE Advanced. This collection covers Physical World and Measurement previous year JEE Advanced questions hand picked by experienced teachers.

Select Subject

Mathematics

Physics

Chemistry

Physical World and Measurement

Correct Marks 4

Incorrectly Marks -1

Q 1. The dimension of {tex} \left(\frac { 1 } { 2 } \right) \varepsilon _ { 0 } E ^ { 2 }{/tex}({tex} \varepsilon _ { 0 }: {/tex} permittivity of free space, {tex} E{/tex} electric field)

A

{tex} M L T ^ { - 1 } {/tex}

B

{tex} M L ^ { 2 } T ^ { - 2 } {/tex}

{tex} M L ^ { - 1 } T ^ { - 2 } {/tex}

D

{tex} M L ^ { 2 } T ^ { - 1 } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 2. A wire of length {tex} \ell = 6 \pm 0.06 \mathrm { cm } {/tex} and radius {tex} r = 0.5 \pm 0.005 \mathrm { cm } {/tex} and mass {tex} m = 0.3 \pm 0.003 \mathrm { gm } . {/tex} Maximum percentage error in density is

4

B

2

C

1

D

6.8

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 3. In a screw gauge, the zero of mainscale coincides with fifth division of circular scale in figure (i). The circular division of screw gauge are {tex} 50 . {/tex} It moves {tex} 0.5 \mathrm { mm } {/tex} on main scale in one rotation. The diameter of the ball in figure (ii) is

A

{tex} 2.25 \mathrm { mm } {/tex}

B

{tex} 2.20 \mathrm { mm } {/tex}

{tex} 1.20 \mathrm { mm } {/tex}

D

{tex} 1.25 \mathrm { mm } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 4. In the determination of Young's modulus {tex}\left(Y = \frac{4MLg}{\pi l d^2}\right){/tex} by using Searle's method, a wire of length {tex}L{/tex} = 2 m and diameter {tex}d{/tex} = 0.5 mm is used. For a load {tex}M{/tex} = 2.5 kg, an extension {tex}l{/tex} = 0.25 mm in the length of the wire is observed. Quantities {tex}d{/tex} and {tex}l{/tex} are measured using a screw gauge and a micrometer, respectively. They have the same pitch of 0.5 mm. The number of divisions on their circular scale is 100. The contributions to the maximum probable error of the {tex}Y{/tex} measurement

due to the errors in the measurements of {tex} d {/tex} and {tex} l {/tex} are the same

B

due to the error in the measurement of {tex} d {/tex} is twice that due to the error in the measurement of {tex} l {/tex}

C

due to the error in the measurement of {tex} l {/tex} is twice that due to the error in the measurement of {tex} d {/tex}

D

due to the error in the measurement of {tex} d {/tex} is four times that due to the error in the measurement of {tex} l {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 5. There are two Vernier calipers both of which have {tex} 1\ \mathrm { cm } {/tex} divided into {tex}10{/tex} equal divisions on the main scale. The Vernier scale of one of the calipers {tex} \left( \mathrm { C } _ { 1 } \right) {/tex} has {tex}10{/tex} equal divisions that correspond to {tex}9{/tex} main scale divisions. The Vernier scale of the other caliper {tex} \left( \mathrm { C } _ { 2 } \right) {/tex} has {tex}10{/tex} equal divisions that correspond to {tex}11{/tex} main scale divisions. The readings of the two calipers are shown in the figure. The measured values (in {tex} \mathrm { cm } {/tex} ) by calipers {tex} \mathrm { C } _ { 1 } {/tex} and {tex} \mathrm { C } _ { 2 } {/tex}, respectively, are

A

{tex}2.85{/tex} and {tex}2.82{/tex}

{tex}2.87{/tex} and {tex}2.83{/tex}

C

{tex}2.87{/tex} and {tex}2.86{/tex}

D

{tex}2.87{/tex} and {tex}2.87{/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 6. Using the expression {tex} 2 \mathrm { d } \sin \theta = \lambda , {/tex} one calculates the values of {tex} \mathrm { d }{/tex} by measuring the corresponding angles {tex} \theta {/tex} in the range 0 to 90{tex} ^ { \circ } . {/tex} The wavelength {tex} \lambda {/tex} is exactly known and the error in {tex} \theta {/tex} is constant for all values of {tex} \theta . {/tex} As {tex} \theta {/tex} increases from {tex} 0 ^ { \circ } {/tex}

A

The absolute error in {tex} d {/tex} remains constant

B

The absolute error in {tex} d {/tex} increases

C

The fractional error in {tex} d {/tex} remains constant

The fractional error in {tex} d {/tex} decreases

Explanation