On account of the disruption in education due to the corona pandemic, we're are providing a 7-day Free trial of our platform to teachers. Know More →

JEE Advanced

Explore popular questions from Integral Calculus for JEE Advanced. This collection covers Integral Calculus previous year JEE Advanced questions hand picked by experienced teachers.

Select Subject

Mathematics

Physics

Chemistry

Integral Calculus

Correct Marks 3

Incorrectly Marks -1

Q 1. Let {tex} f: R \rightarrow R {/tex} be a continuous and bijective function defined such that {tex} f ( a ) = 0 ( a \neq 0 ) . {/tex} The area bounded by {tex} y = f ( x ) , x = a , x = a - t {/tex} is equal to the area bounded by {tex} y = f ( x ) , x = a , x = a + t \forall t \in R , {/tex} then Graph of {tex} y = f ( x ) {/tex} is symmetrical about point

A

{tex} ( 0,0 ) {/tex}

B

{tex} ( 0 , \alpha ) {/tex}

{tex} ( \alpha , 0 ) {/tex}

D

{tex} ( \alpha , \alpha ) {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 2. The value of the integral {tex} \int \frac { \cos ^ { 3 } x + \cos ^ { 5 } x } { \sin ^ { 2 } x + \sin ^ { 4 } x } d x {/tex}

A

{tex} \sin x - 6 \tan ^ { - 1 } ( \sin x ) + c {/tex}

B

{tex} \sin x - 2 ( \sin x ) ^ { - 1 } + c {/tex}

{tex} \sin x - 2 ( \sin x ) ^ { - 1 } - 6 \tan ^ { - 1 } ( \sin x ) + c {/tex}

D

{tex} \sin x - 2 ( \sin x ) ^ { - 1 } + 5 \tan ^ { - 1 } ( \sin x ) + c {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 3. If {tex} \int _ { \sin x } ^ { 1 } t ^ { 2 } f ( t ) d t = 1 - \sin x , {/tex} then {tex} \mathrm { f } \left( \frac { 1 } { \sqrt { 3 } } \right) {/tex} is

A

{tex} \frac { 1 } { 3 } {/tex}

B

{tex} \frac { 1 } { \sqrt { 3 } } {/tex}

{tex}3{/tex}

D

{tex} \sqrt { 3 } {/tex}

Explanation

Correct Marks 4

Incorrectly Marks -1

Q 4. {tex} \int \frac { x ^ { 2 } - 1 } { x ^ { 3 } \sqrt { 2 x ^ { 4 } - 2 x ^ { 2 } + 1 } } d x = {/tex}

A

{tex} \frac { \sqrt { 2 x ^ { 4 } - 2 x ^ { 2 } + 1 } } { x ^ { 2 } } + c {/tex}

B

{tex} \frac { \sqrt { 2 x ^ { 4 } - 2 x ^ { 2 } + 1 } } { x ^ { 3 } } + c {/tex}

C

{tex} \frac { \sqrt { 2 x ^ { 4 } - 2 x ^ { 2 } + 1 } } { x } + c {/tex}

{tex} \frac { \sqrt { 2 x ^ { 4 } - 2 x ^ { 2 } + 1 } } { 2 x ^ { 2 } } + c {/tex}

Explanation


Correct Marks 4

Incorrectly Marks -1

Q 5. Let {tex} I = \int \frac { e ^ { x } } { e ^ { 4 x } + e ^ { 2 x } + 1 } d x , J = \int \frac { e ^ { - x } } { e ^ { - 4 x } + e ^ { - 2 x } + 1 } d x . {/tex} Then, for an arbitrary constant {tex} C , {/tex} the value of {tex} \mathrm { J } -\mathrm I{/tex} equals

A

{tex} \frac { 1 } { 2 } \log \left( \frac { e ^ { 4 x } - e ^ { 2 x } + 1 } { e ^ { 4 x } + e ^ { 2 x } + 1 } \right) + C {/tex}

B

{tex} \frac { 1 } { 2 } \log \left( \frac { e ^ { 2 x } + e ^ { x } + 1 } { e ^ { 2 x } - e ^ { x } + 1 } \right) + C {/tex}

{tex} \frac { 1 } { 2 } \log \left( \frac { e ^ { 2 x } - e ^ { x } + 1 } { e ^ { 2 x } + e ^ { x } + 1 } \right) + C {/tex}

D

{tex} \frac { 1 } { 2 } \log \left( \frac { e ^ { 4 x } + e ^ { 2 x } + 1 } { e ^ { 4 x } - e ^ { 2 x } + 1 } \right) + C {/tex}

Explanation


Correct Marks 4

Incorrectly Marks -1

Q 6. The area between the curve , the -axis and the ordinates of two minima of the curve is

sq unit

B

sq unit

C

sq unit

D

sq unit

Explanation



For maxima or minima, put , we get

Then,
and
Required area

Correct Marks 4

Incorrectly Marks -1

Q 7. The area bounded by the curves and is

A

2 sq unit

B

sq unit

sq unit

D

sq unit

Explanation

Area of square sq unit
Description: \\SERVER\Common Folder\Data Typing Files\Sujata\AIEEE Maths all structures\29 sol I 51.jpg
Area of circle sq unit
Required area sq unit

Correct Marks 4

Incorrectly Marks -1

Q 8. The area of the closed igure bounded by and and the -axis is

sq unit

B

sq unit

C

sq unit

D

sq unit

Explanation

Required area


Correct Marks 4

Incorrectly Marks -1

Q 9. The area of the region by curves is

A

B

D

None of these

Explanation

Required area

Description: Z:\Data Typing Files\Sujata\scan\MATHS 21.12.jpg

Correct Marks 4

Incorrectly Marks -1

Q 10. The area bounded by the parabola and the line and is

A

B

C

Explanation

Required area area of curve PSRQP
Description: Z:\Data Typing Files\Sujata\scan\24.jpg

Correct Marks 4

Incorrectly Marks -1

Q 11. The areas of the figure into which curve divides the circle are in the ratio

A

B

D

None of these

Explanation

We have,
Area bounded by the two curves

Area bounded by and outside

Required ratio

Correct Marks 4

Incorrectly Marks -1

Q 12. Area bounded by the curve and -axis is

1 sq unit

B

1/2 sq unit

C

2 sq unit

D

None of these

Explanation


Description: Z:\Data Typing Files\Sujata\scan\25.jpg

Correct Marks 4

Incorrectly Marks -1

Q 13. The slope of tangent to a curve at is . If the curve passes through the point (1, 2), then the area of the region bounded by the curve, the -axis and the line is

sq unit

B

sq unit

C

sq unit

D

6 sq unit

Explanation

We have,
, it passes through (1, 2)

Then,
Required area

Correct Marks 4

Incorrectly Marks -1

Q 14. The area common to the circle and the parabola is

A

sq unit

B

sq unit

sq unit

D

None of these

Explanation

Given equation of curves are
and
The point of intersection are
Description: \\SERVER\Common Folder\Data Typing Files\Sujata\AIEEE Maths all structures\29 sol I 25.jpg
Required area,
area of curve
[area of curve area of curve ]





Correct Marks 4

Incorrectly Marks -1

Q 15. is equal to

A

B

D

Explanation

Let


Correct Marks 4

Incorrectly Marks -1

Q 16. Let . Then, is

Continuous and non differentiable at

B

Discontinuous at

C

Neither continuous nor differentiable at

D

Non-differentiable at

Explanation

We have,

Clearly, is everywhere continuous and differentiable except at

Correct Marks 4

Incorrectly Marks -1

Q 17. is equal to

A

0

B

C

Explanation

We have,