Correct Marks 1
Incorrectly Marks 0
Q 1. Two adjacent sides of a parallelogram are {tex} 51 \mathrm { cm } {/tex} and {tex} 37 \mathrm { cm } . {/tex} One of its diagonals is {tex} 20 \mathrm { cm } , {/tex} then its area is:
{tex} 412 \mathrm { cm } ^ { 2 } {/tex}
{tex} 512 \mathrm { cm } ^ { 2 } {/tex}
{tex} 612 \mathrm { cm } ^ { 2 } {/tex}
{tex} 712 \mathrm { cm } ^ { 2 } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 2. {tex}\mathrm {ABCD} {/tex} is a parallelogram of area '{tex}\mathrm {S} {/tex} ', {tex}\mathrm {E} {/tex} and {tex}\mathrm {F} {/tex} are the mid points of the sides {tex}\mathrm {AD} {/tex} and {tex}\mathrm {BC} {/tex} respectively. If {tex}\mathrm {G} {/tex} is any point on the line {tex}\mathrm {EF} {/tex}, then the area of {tex} \Delta \mathrm {AGB}{/tex} is equal to :
{tex} \frac { \mathrm { S } } { 2 } {/tex}
{tex} \frac { \mathrm { S } } { 3 } {/tex}
{tex} \frac { \mathrm { S } } { 4 } {/tex}
{tex} \frac { \mathrm { S } } { 5 } {/tex}