# Class 10

Explore popular questions from Quadratic Equations for Class 10. This collection covers Quadratic Equations previous year Class 10 questions hand picked by experienced teachers.

## Mathematics

Correct Marks 1

Incorrectly Marks 0

Q 1. Roots of the quadratic equation {tex} x ^ { 2 } - 5 x - 6 = 0 {/tex} are

A

equal but negative

B

unequal but of same signs

unequal but of opposite signs

D

equal but positive

Correct Marks 1

Incorrectly Marks 0

Q 2. The quadratic equation where one root is {tex} 3 + 2 \sqrt { 3 } {/tex} is

{tex} x ^ { 2 } - 6 x - 3 = 0 {/tex}

B

{tex} x ^ { 2 } + 6 x - 3 = 0 {/tex}

C

{tex} x ^ { 2 } + 6 x + 3 = 0 {/tex}

D

{tex} x ^ { 2 } - 6 x + 3 = 0 {/tex}

Correct Marks 1

Incorrectly Marks 0

Q 3. If one root of the equation {tex} a x ^ { 2 } + b x + c = 0 {/tex} is the reciprocal of other then

A

{tex} a = b {/tex}

B

{tex} b = c {/tex}

{tex} a = c {/tex}

D

{tex} a = - c {/tex}

Correct Marks 1

Incorrectly Marks 0

Q 4. Given that {tex} f ( x ) = 3 x ^ { 4 } - 5 x ^ { 3 } + 8 x ^ { 2 } - 6 x + 8 {/tex} and {tex} g ( x ) = x ^ { 2 } - 2 x + 2 . {/tex} Then how many real roots does the equation {tex} \frac { f ( x ) } { g ( x ) } = 0 {/tex} have?

0

B

2

C

3

D

4

##### Explanation

{tex} \frac { f ( x ) } { g ( x ) } {/tex} = {tex} \frac {3 x ^ { 4 } - 5 x ^ { 3 } + 8 x ^ { 2 } - 6 x + 8 } { x ^ { 2 } - 2 x + 2 } = 3x ^ 2 + x + 4 {/tex} {tex} D = b ^ 2 - 4ac = 1 - 4(3)(4) {/tex} {tex} D < 0 {/tex} So {tex} \frac { f ( x ) } { g ( x ) } = 0 {/tex} has no real roots

Correct Marks 1

Incorrectly Marks 0

Q 5. The number of real roots of equation
{tex} \left( a ^ { 2 } + b ^ { 2 } \right) x ^ { 2 } + 2 a ( \sqrt { b ^ { 2 } + c ^ { 2 } } ) x + a ^ { 2 } + c ^ { 2 } = 0 {/tex}
where, {tex} a , b {/tex} and {tex} c {/tex} are non zero is

0

B

1

C

2

D

4

Correct Marks 1

Incorrectly Marks 0

Q 6. If the roots of the equation {tex} x ^ { 2 } - 4 x + 1 = 0 {/tex} are in the ratio {tex} \mathrm { p }: \mathrm { q } {/tex} then the value of {tex} \sqrt { \frac { p } { q } } + \sqrt { \frac { q } { p } } {/tex} is

A

{tex}0{/tex}

{tex}4{/tex}

C

{tex} 2 \sqrt { 3 } {/tex}

D

Cannot be determined

Correct Marks 1

Incorrectly Marks 0

Q 7. How are the roots of the quadratic equations {tex} a x ^ { 2 } + b x + c = 0 {/tex} and {tex} c x ^ { 2 } + b x + a = 0 {/tex} are related?

A

No definite relation exist between the roots

B

The roots of second equation are the sum and the difference of the roots of the first equation

The roots of the one equation are the reciprocals of the roots of the other equation

D

The roots of the first and the second equations are equal in magnitude and opposite in sign

Correct Marks 1

Incorrectly Marks 0

Q 8. The condition that the equation {tex} x ^ { 2 } + { p } x + { q } = 0 {/tex} whose one root is the cube of the other root is

A

{tex} p = q ^ { 1 / 4 } \left[ 1 - q ^ { 1 / 2 } \right] {/tex}

B

{tex} - p = q ^ { 1 / 2 } \left[ 1 - q ^ { 1 / 4 } \right] {/tex}

{tex} - p = q ^ { 1 / 4 } \left[ 1 + q ^ { 1 / 2 } \right] {/tex}

D

{tex} p = q ^ { 1 / 2 } \left[ 1 + q ^ { 1 / 4 } \right] {/tex}

Correct Marks 1

Incorrectly Marks 0

Q 9. If the quadratic equation {tex} x ^ { 2 } + a x + b = 0 {/tex} and {tex} x ^ { 2 } + b x + a = 0 ( a \neq b ) {/tex} have a common root, then the numerical value of {tex} a + b {/tex} is

A

1

B

2

-1

D

None

Correct Marks 1

Incorrectly Marks 0

Q 10. Both the roots of the equation
{tex} ( x - b ) ( x - c ) + ( x - a ) ( x - c ) + ( x - a ) ( x - b ) {/tex} are always

positive

B

negative

C

real

D

None

Correct Marks 1

Incorrectly Marks 0

Q 11. The number of real solutions of the equation {tex} | \mathrm { x } | ^ { 2 } - 3 | \mathrm { x } | + 2 = 0 {/tex}

4

B

1

C

3

D

2

Correct Marks 1

Incorrectly Marks 0

Q 12. The equation has {tex} x - \frac { 2 } { x - 1 } = 1 - \frac { 2 } { x - 1 } {/tex}

A

no root

B

one root

two equal roots

D

Infinitely many solution

Correct Marks 1

Incorrectly Marks 0

Q 13. Let {tex} \alpha , \beta {/tex} be the roots of the equation {tex} ( x - a ) ( x - b ) = c\ c \neq 0 {/tex} Find the roots of the equation {tex} ( x - \alpha ) ( x - \beta ) + c = 0 {/tex} are

A

{tex}a{/tex} and {tex} c {/tex}

B

{tex}b{/tex} and {tex} c {/tex}

{tex}a{/tex} and {tex}b{/tex}

D

{tex} a + c , b + c {/tex}

Correct Marks 1

Incorrectly Marks 0

Q 14. How many solutions does the following equation have
{tex} \sqrt { x + 1 } - \sqrt { x - 1 } = \sqrt { 4 x - 1 } {/tex}

no solution

B

one solution

C

two solutions

D

None

Correct Marks 1

Incorrectly Marks 0

Q 15. The roots of the equation {tex} x ^ { 2 } - 2 a x + a ^ { 2 } + a - 3 - 0 {/tex} are real and less than {tex} 3 {/tex} then

{tex} a < 2 {/tex}

B

{tex} 2 \leq a \leq 3 {/tex}

C

{tex} 3 \leq a \leq 4 {/tex}

D

{tex} a > 4 {/tex}

Correct Marks 1

Incorrectly Marks 0

Q 16. Consider the following statements.
If the quadratic equations, {tex} x ^ { 2 } + a x + 2 = 0 {/tex} and {tex} x ^ { 2 } + x + b = 0 {/tex} have a common root {tex} x = 1 {/tex}, then

A

{tex} a + b = -5 {/tex}

B

{tex} a b = 6 {/tex}

C

{tex} \frac { a } { b } = \frac { 3 } { 2 } {/tex}

All of the above

Correct Marks 1

Incorrectly Marks 0

Q 17. Match the following (one to many)
Column-I and column-II contains four entries each. Entries of column-I are to be matched with some entries of column-II. One or more than one entries of column-I may have the matching with the same entries of column-II and one entry of column-II may have one or more than one matching with entries of column-I

A

{tex} ( \mathrm { A } ) - ( \mathrm { P } ) {/tex}

B

{tex} ( \mathrm { B } ) - ( \mathrm { R } \mathrm { } ) {/tex}

C

{tex} ( \mathrm { C } ) - ( \mathrm { S } \mathrm { } ) {/tex}

{tex} (\mathrm D ) - (\mathrm Q ) {/tex}

Correct Marks 1

Incorrectly Marks 0

Q 18. Which of the following is a quadratic equation?

A

{tex} x ^ { 2 } + 2 x + 1 = ( 4 - x ) ^ { 2 } + 3 {/tex}

B

{tex} - 2 x ^ { 2 } = ( 5 - x ) \left( 2 x - \frac { 2 } { 5 } \right) {/tex}

C

{tex} ( k + 1 ) x ^ { 2 } + \frac { 3 } { 2 } x = 7 , {/tex} where {tex} k = - 1 {/tex}

{tex} x ^ { 3 } - x ^ { 2 } = \left( x - 1 \right) ^ { 3 } {/tex}

##### Explanation

Correct Marks 1

Incorrectly Marks 0

Q 19. Which of the following is not a quadratic equation?

A

{tex} 2 ( x - 1 ) ^ { 2 } = 4 x ^ { 2 } - 2 x + 1 {/tex}

B

{tex} 2 x - x ^ { 2 } = x ^ { 2 } + 5 {/tex}

{tex} ( \sqrt { 2 } x + \sqrt { 3 } ) ^ { 2 } + x ^ { 2 } = 3 x ^ { 2 } - 5 x {/tex}

D

{tex} \left( x ^ { 2 } + 2 x \right) ^ { 2 } = x ^ { 4 } + 3 + 4 x ^ { 3 } {/tex}

##### Explanation

Correct Marks 1

Incorrectly Marks 0

Q 20. Which of the following equations has 2 as a root?

A

{tex} x ^ { 2 } - 4 x + 5 = 0 {/tex}

B

{tex} x ^ { 2 } + 3 x - 12 = 0 {/tex}

{tex} 2 x ^ { 2 } - 7 x + 6 = 0 {/tex}

D

{tex} 3 x ^ { 2 } - 6 x - 2 = 0 {/tex}

##### Explanation

Correct Marks 1

Incorrectly Marks 0

Q 21. If {tex} \frac { 1 } { 2 } {/tex} is a root of the equation {tex} x ^ { 2 } + k x - \frac { 5 } { 4 } = 0 {/tex}, then the value of {tex} k {/tex} is

{tex} 2 {/tex}

B

{tex} - 2 {/tex}

C

{tex} \frac { 1 } { 2 } {/tex}

D

{tex} \frac { 1 } { 2 } {/tex}

##### Explanation

Correct Marks 1

Incorrectly Marks 0

Q 22. Which of the following equations has the sum of its roots as {tex} 3 ? {/tex}

A

{tex} 2 x ^ { 2 } - 3 x + 6 = 0 {/tex}

{tex} - x ^ { 2 } + 3 x - 3 = 0 {/tex}

C

{tex} \sqrt { 2 } x ^ { 2 } - \frac { 3 } { \sqrt { 2 } } x + 1 = 0 {/tex}

D

{tex} 3 x ^ { 2 } - 3 x + 3 = 0 {/tex}

##### Explanation

Correct Marks 1

Incorrectly Marks 0

Q 23. Which of the following equations has two distinct real roots?

A

{tex} 2 x ^ { 2 } - 3 \sqrt { 2 } x + \frac { 9 } { 4 } = 0 {/tex}

{tex} x ^ { 2 } + x - 5 = 0 {/tex}

C

{tex} x ^ { 2 } + 3 x + 2 \sqrt { 2 } = 0 {/tex}

D

{tex} 5 x ^ { 2 } - 3 x + 1 = 0 {/tex}

##### Explanation

Correct Marks 1

Incorrectly Marks 0

Q 24. Values of {tex} k {/tex} for which the quadratic equation {tex} 2 x ^ { 2 } - k x + k = 0 {/tex} has equal roots is :

A

0

B

4

C

8

0 and 8

Correct Marks 1

Incorrectly Marks 0

Q 25. The quadratic equation {tex} 2 x ^ { 2 } - \sqrt { 5 } x + 1 = 0 {/tex} has

A

two distinct real roots

B

two equal real roots

no real roots

D

more than 2 real roots