Correct Marks 1
Incorrectly Marks 0
Q 1. Roots of the quadratic equation {tex} x ^ { 2 } - 5 x - 6 = 0 {/tex} are
equal but negative
unequal but of same signs
unequal but of opposite signs
equal but positive
Correct Marks 1
Incorrectly Marks 0
Q 2. The quadratic equation where one root is {tex} 3 + 2 \sqrt { 3 } {/tex} is
{tex} x ^ { 2 } - 6 x - 3 = 0 {/tex}
{tex} x ^ { 2 } + 6 x - 3 = 0 {/tex}
{tex} x ^ { 2 } + 6 x + 3 = 0 {/tex}
{tex} x ^ { 2 } - 6 x + 3 = 0 {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 3. If one root of the equation {tex} a x ^ { 2 } + b x + c = 0 {/tex} is the reciprocal of other then
{tex} a = b {/tex}
{tex} b = c {/tex}
{tex} a = c {/tex}
{tex} a = - c {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 4. Given that {tex} f ( x ) = 3 x ^ { 4 } - 5 x ^ { 3 } + 8 x ^ { 2 } - 6 x + 8 {/tex} and {tex} g ( x ) = x ^ { 2 } - 2 x + 2 . {/tex} Then how many real roots does the equation {tex} \frac { f ( x ) } { g ( x ) } = 0 {/tex} have?
0
2
3
4
{tex} \frac { f ( x ) } { g ( x ) } {/tex} = {tex} \frac {3 x ^ { 4 } - 5 x ^ { 3 } + 8 x ^ { 2 } - 6 x + 8 } { x ^ { 2 } - 2 x + 2 } = 3x ^ 2 + x + 4 {/tex} {tex} D = b ^ 2 - 4ac = 1 - 4(3)(4) {/tex} {tex} D < 0 {/tex} So {tex} \frac { f ( x ) } { g ( x ) } = 0 {/tex} has no real roots
Correct Marks 1
Incorrectly Marks 0
Q 5. The number of real roots of equation
{tex} \left( a ^ { 2 } + b ^ { 2 } \right) x ^ { 2 } + 2 a ( \sqrt { b ^ { 2 } + c ^ { 2 } } ) x + a ^ { 2 } + c ^ { 2 } = 0 {/tex}
where, {tex} a , b {/tex} and {tex} c {/tex} are non zero is
0
1
2
4
Correct Marks 1
Incorrectly Marks 0
Q 6. If the roots of the equation {tex} x ^ { 2 } - 4 x + 1 = 0 {/tex} are in the ratio {tex} \mathrm { p }: \mathrm { q } {/tex} then the value of {tex} \sqrt { \frac { p } { q } } + \sqrt { \frac { q } { p } } {/tex} is
{tex}0{/tex}
{tex}4{/tex}
{tex} 2 \sqrt { 3 } {/tex}
Cannot be determined
Correct Marks 1
Incorrectly Marks 0
Q 7. How are the roots of the quadratic equations {tex} a x ^ { 2 } + b x + c = 0 {/tex} and {tex} c x ^ { 2 } + b x + a = 0 {/tex} are related?
No definite relation exist between the roots
The roots of second equation are the sum and the difference of the roots of the first equation
The roots of the one equation are the reciprocals of the roots of the other equation
The roots of the first and the second equations are equal in magnitude and opposite in sign
Correct Marks 1
Incorrectly Marks 0
Q 8. The condition that the equation {tex} x ^ { 2 } + { p } x + { q } = 0 {/tex} whose one root is the cube of the other root is
{tex} p = q ^ { 1 / 4 } \left[ 1 - q ^ { 1 / 2 } \right] {/tex}
{tex} - p = q ^ { 1 / 2 } \left[ 1 - q ^ { 1 / 4 } \right] {/tex}
{tex} - p = q ^ { 1 / 4 } \left[ 1 + q ^ { 1 / 2 } \right] {/tex}
{tex} p = q ^ { 1 / 2 } \left[ 1 + q ^ { 1 / 4 } \right] {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 9. If the quadratic equation {tex} x ^ { 2 } + a x + b = 0 {/tex} and {tex} x ^ { 2 } + b x + a = 0 ( a \neq b ) {/tex} have a common root, then the numerical value of {tex} a + b {/tex} is
1
2
-1
None
Correct Marks 1
Incorrectly Marks 0
Q 10. Both the roots of the equation
{tex} ( x - b ) ( x - c ) + ( x - a ) ( x - c ) + ( x - a ) ( x - b ) {/tex} are always
positive
negative
real
None
Correct Marks 1
Incorrectly Marks 0
Q 11. The number of real solutions of the equation {tex} | \mathrm { x } | ^ { 2 } - 3 | \mathrm { x } | + 2 = 0 {/tex}
4
1
3
2
Correct Marks 1
Incorrectly Marks 0
Q 12. The equation has {tex} x - \frac { 2 } { x - 1 } = 1 - \frac { 2 } { x - 1 } {/tex}
no root
one root
two equal roots
Infinitely many solution
Correct Marks 1
Incorrectly Marks 0
Q 13. Let {tex} \alpha , \beta {/tex} be the roots of the equation {tex} ( x - a ) ( x - b ) = c\ c \neq 0 {/tex} Find the roots of the equation {tex} ( x - \alpha ) ( x - \beta ) + c = 0 {/tex} are
{tex}a{/tex} and {tex} c {/tex}
{tex}b{/tex} and {tex} c {/tex}
{tex}a{/tex} and {tex}b{/tex}
{tex} a + c , b + c {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 14. How many solutions does the following equation have
{tex} \sqrt { x + 1 } - \sqrt { x - 1 } = \sqrt { 4 x - 1 } {/tex}
no solution
one solution
two solutions
None
Correct Marks 1
Incorrectly Marks 0
Q 15. The roots of the equation {tex} x ^ { 2 } - 2 a x + a ^ { 2 } + a - 3 - 0 {/tex} are real and less than {tex} 3 {/tex} then
{tex} a < 2 {/tex}
{tex} 2 \leq a \leq 3 {/tex}
{tex} 3 \leq a \leq 4 {/tex}
{tex} a > 4 {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 16. Consider the following statements.
If the quadratic equations, {tex} x ^ { 2 } + a x + 2 = 0 {/tex} and {tex} x ^ { 2 } + x + b = 0 {/tex} have a common root {tex} x = 1 {/tex}, then
{tex} a + b = -5 {/tex}
{tex} a b = 6 {/tex}
{tex} \frac { a } { b } = \frac { 3 } { 2 } {/tex}
All of the above
Correct Marks 1
Incorrectly Marks 0
Q 17. Match the following (one to many)
Column-I and column-II contains four entries each. Entries of column-I are to be matched with some entries of column-II. One or more than one entries of column-I may have the matching with the same entries of column-II and one entry of column-II may have one or more than one matching with entries of column-I
{tex} ( \mathrm { A } ) - ( \mathrm { P } ) {/tex}
{tex} ( \mathrm { B } ) - ( \mathrm { R } \mathrm { } ) {/tex}
{tex} ( \mathrm { C } ) - ( \mathrm { S } \mathrm { } ) {/tex}
{tex} (\mathrm D ) - (\mathrm Q ) {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 18. Which of the following is a quadratic equation?
{tex} x ^ { 2 } + 2 x + 1 = ( 4 - x ) ^ { 2 } + 3 {/tex}
{tex} - 2 x ^ { 2 } = ( 5 - x ) \left( 2 x - \frac { 2 } { 5 } \right) {/tex}
{tex} ( k + 1 ) x ^ { 2 } + \frac { 3 } { 2 } x = 7 , {/tex} where {tex} k = - 1 {/tex}
{tex} x ^ { 3 } - x ^ { 2 } = \left( x - 1 \right) ^ { 3 } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 19. Which of the following is not a quadratic equation?
{tex} 2 ( x - 1 ) ^ { 2 } = 4 x ^ { 2 } - 2 x + 1 {/tex}
{tex} 2 x - x ^ { 2 } = x ^ { 2 } + 5 {/tex}
{tex} ( \sqrt { 2 } x + \sqrt { 3 } ) ^ { 2 } + x ^ { 2 } = 3 x ^ { 2 } - 5 x {/tex}
{tex} \left( x ^ { 2 } + 2 x \right) ^ { 2 } = x ^ { 4 } + 3 + 4 x ^ { 3 } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 20. Which of the following equations has 2 as a root?
{tex} x ^ { 2 } - 4 x + 5 = 0 {/tex}
{tex} x ^ { 2 } + 3 x - 12 = 0 {/tex}
{tex} 2 x ^ { 2 } - 7 x + 6 = 0 {/tex}
{tex} 3 x ^ { 2 } - 6 x - 2 = 0 {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 21. If {tex} \frac { 1 } { 2 } {/tex} is a root of the equation {tex} x ^ { 2 } + k x - \frac { 5 } { 4 } = 0 {/tex}, then the value of {tex} k {/tex} is
{tex} 2 {/tex}
{tex} - 2 {/tex}
{tex} \frac { 1 } { 2 } {/tex}
{tex} \frac { 1 } { 2 } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 22. Which of the following equations has the sum of its roots as {tex} 3 ? {/tex}
{tex} 2 x ^ { 2 } - 3 x + 6 = 0 {/tex}
{tex} - x ^ { 2 } + 3 x - 3 = 0 {/tex}
{tex} \sqrt { 2 } x ^ { 2 } - \frac { 3 } { \sqrt { 2 } } x + 1 = 0 {/tex}
{tex} 3 x ^ { 2 } - 3 x + 3 = 0 {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 23. Which of the following equations has two distinct real roots?
{tex} 2 x ^ { 2 } - 3 \sqrt { 2 } x + \frac { 9 } { 4 } = 0 {/tex}
{tex} x ^ { 2 } + x - 5 = 0 {/tex}
{tex} x ^ { 2 } + 3 x + 2 \sqrt { 2 } = 0 {/tex}
{tex} 5 x ^ { 2 } - 3 x + 1 = 0 {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 24. Values of {tex} k {/tex} for which the quadratic equation {tex} 2 x ^ { 2 } - k x + k = 0 {/tex} has equal roots is :
0
4
8
0 and 8
Correct Marks 1
Incorrectly Marks 0
Q 25. The quadratic equation {tex} 2 x ^ { 2 } - \sqrt { 5 } x + 1 = 0 {/tex} has
two distinct real roots
two equal real roots
no real roots
more than 2 real roots