Correct Marks 1
Incorrectly Marks 0
Q 1. When {tex}3{/tex} fair dice are thrown what is the probabillity the sum of the numbers is more than or equal to {tex} 6 ? {/tex}
{tex} \frac { 103 } { 216 } {/tex}
{tex} \frac { 103 } { 108 } {/tex}
{tex} \frac { 47 } { 216 } {/tex}
None of these
Correct Marks 1
Incorrectly Marks 0
Q 2. Three coins are tossed. What is the probability of getting neither 3 Heads nor 3 Tails?
{tex} \frac { 1 } { 2 } {/tex}
{tex} \frac { 1 } { 3 } {/tex}
{tex} \frac { 2 } { 3 } {/tex}
{tex} \frac { 3 } { 4 } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 3. If {tex}A{/tex} and {tex}B{/tex} are two events associated with a random experiment such that {tex} P ( A ) = 0.5 , P ( B ) = 0.3 {/tex} and {tex} P ( A \cup B ) = 0.2 . {/tex} Find {tex} P ( A \cap B ). {/tex}
{tex} 0.4{/tex}
{tex} 0.3{/tex}
{tex} 0.6 {/tex}
{tex} 0.9{/tex}
Correct Marks 1
Incorrectly Marks 0
Q 4. {tex} \mathrm A{/tex} and {tex} \mathrm { B } {/tex} are two mutually exclusive events such that {tex} \mathrm { P } ( \mathrm { A } ) = \frac { 1 } { 2 } {/tex} and {tex} \mathrm { P } ( \mathrm { B } ) = \frac { 1 } { 3 } . {/tex} Find {tex} \mathrm { P } ( \mathrm { A } \cup \mathrm { B } ) {/tex}
{tex} \frac { 5 } { 6 } {/tex}
{tex} \frac { 3 } { 4 } {/tex}
{tex} \frac { 2 } { 3 } {/tex}
None of these
Correct Marks 1
Incorrectly Marks 0
Q 5. 3 identical dice are rolled. The probability the same number will appear on each of them is:
{tex} \frac { 1 } { 6 } {/tex}
{tex} \frac { 6 } { 216 } {/tex}
{tex} \frac { 1 } { 216 } {/tex}
{tex} \frac { 3 } { 28 } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 6. Which of the following can n't be the probability of an event
{tex} \frac { 2 } { 3 } {/tex}
{tex} \frac { 7 } { 5 } {/tex}
{tex} - \frac { 1 } { 2 } {/tex}
Both (B) and (C)
Correct Marks 1
Incorrectly Marks 0
Q 7. The probability of getting a number greater than 2 in throwing a die is {tex} - {/tex}
{tex} \frac { 2 } { 3 } {/tex}
{tex}0.66{/tex}
{tex} \frac { 1 } { 3 } {/tex}
{tex}0.33{/tex}
Correct Marks 1
Incorrectly Marks 0
Q 8. A card is drawn from an ordinary pack of 52 cards and a gambler bets that, it is a spade or an ace, what are the odds against his winning this bet?
4:9
7:6
9:4
8:5
Correct Marks 1
Incorrectly Marks 0
Q 9. If two dice are thrown what is the probability of getting a multiple of 2 on one dice and a multiple of 3 on the other?
{tex} \frac { 15 } { 36 } {/tex}
{tex} \frac { 25 } { 36 } {/tex}
{tex} \frac { 11 } { 36 } {/tex}
{tex} \frac { 05 } { 06 } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 10. If two dice are thrown simultaneously what is the probability of getting the sum as a prime number?
{tex} \frac { 3 } { 5 } {/tex}
{tex} \frac { 5 } { 12 } {/tex}
{tex} \frac { 1 } { 2 } {/tex}
{tex} \frac { 3 } { 4 } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 11. Match the following (one to many)
Column-I and column-II contains four entries each. Entries of column-I are to be matched with some entries of column-II. One or more than one entries of column-I may have the matching with the same entries of column-II and one entry of column-II may have one or more than one matching with entries of column-I
Three fair coins are tossed simultaneously. In finding the probabilities match the column I with column II
{tex} ( \mathrm { A } ) - ( \mathrm { Q } ) {/tex}
{tex} ( \mathrm { B } ) - ( \mathrm { P } ) {/tex}
{tex} ( \mathrm { C } ) - ( \mathrm { S } ) {/tex}
{tex} (\mathrm D ) - (\mathrm R ) {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 12. If an event that cannot occur, then its probability is :
{tex}1{/tex}
{tex} \frac { 3 } { 4 } {/tex}
{tex} \frac { 1 } { 2 } {/tex}
{tex}0{/tex}
Correct Marks 1
Incorrectly Marks 0
Q 13. An event is very unlikely to happen. Its probability is closest to :
0.0001
0.001
0.01
0.1
Correct Marks 1
Incorrectly Marks 0
Q 14. If the probability of an event is {tex} p , {/tex} then the probability of its complementary event will be :
{tex} p - 1 {/tex}
{tex} p {/tex}
{tex} 1 - p {/tex}
{tex} 1 - \frac { 1 } { p } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 15. If {tex} P ( A ) {/tex} denotes the probability of an event {tex} A {/tex}, then :
{tex} P ( A ) < 0 {/tex}
{tex} P ( A ) > 1 {/tex}
{tex} 0 \leq P ( A ) \leq 1 {/tex}
{tex} - 1 \leq P ( A ) \leq 1 {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 16. If a card is selected from a deck of 52 cards, then the probability of its being a red face card is :
{tex} \frac { 3 } { 26 } {/tex}
{tex} \frac { 3 } { 13 } {/tex}
{tex} \frac { 2 } { 13 } {/tex}
{tex} \frac { 1 } { 2 } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 17. The probability that a non-leap year selected at random will contain 53 Sundays is:
{tex} \frac { 1 } { 7 } {/tex}
{tex} \frac { 2 } { 7 } {/tex}
{tex} \frac { 3 } { 7 } {/tex}
{tex} \frac { 5 } { 7 } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 18. When a die is thrown, the probability of getting an odd number less than 3 is :
{tex} \frac { 1 } { 6 } {/tex}
{tex} \frac { 1 } { 3 } {/tex}
{tex} \frac { 1 } { 2 } {/tex}
{tex}0{/tex}
Correct Marks 1
Incorrectly Marks 0
Q 19. A card is drawn from a deck of 52 cards. The event {tex} E {/tex} is that card is not an ace of hearts. The number of outcomes favourable to {tex} E {/tex} is :
4
13
48
51
Correct Marks 1
Incorrectly Marks 0
Q 20. A girl calculates that the probability of her winning the first prize in a lottery is {tex} 0.08 . {/tex} If {tex} 6,000 {/tex} tickets are sold, how many tickets has she bought?
40
240
480
750
Correct Marks 1
Incorrectly Marks 0
Q 21. Someone is asked to take a number from 1 to 100 . The probability that it is a prime is :
{tex} \frac { 1 } { 5 } {/tex}
{tex} \frac { 6 } { 25 } {/tex}
{tex} \frac { 1 } { 4 } {/tex}
{tex} \frac { 13 } { 50 } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 22. Which of the following cannot be the probability of an event?
{tex} \frac { 2 } { 3 } {/tex}
{tex} - 1.5 {/tex}
{tex} 15 \% {/tex}
{tex}0.7{/tex}
Correct Marks 1
Incorrectly Marks 0
Q 23. The probability of getting an even number, when a die is thrown once, is:
{tex} \frac { 1 } { 2 } {/tex}
{tex} \frac { 1 } { 6 } {/tex}
{tex} \frac { 1 } { 6 } {/tex}
{tex} \frac { 5 } { 6 } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 24. In a family of 3 children, the probability of having at least one boy is :
{tex} \frac { 7 } { 8 } {/tex}
{tex} \frac { 1 } { 8 } {/tex}
{tex} \frac { 5 } { 8 } {/tex}
{tex} \frac { 3 } { 4 } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 25. The probability that a number selected at random from the numbers {tex} 1,2,3 , \ldots , 15 {/tex} is a multiple of {tex} 4 , {/tex} is:
{tex} \frac { 4 } { 15 } {/tex}
{tex} \frac { 2 } { 15 } {/tex}
{tex} \frac { 1 } { 5 } {/tex}
{tex} \frac { 1 } { 3 } {/tex}