Correct Marks 1
Incorrectly Marks 0
Q 1. The pair of equations {tex} 3 ^ { x + y } = 81,81 ^ { x - y } = 3 {/tex} has
no solution
the solution {tex} x = 2 ^ { 1 / 2 } , y = 2 ^ { 1 / 2 } {/tex}
the solution {tex} x = 2 , y = 2 {/tex}
the solution {tex} x = 2 \frac { 1 } { 8 } , y = 1 \frac { 7 } { 8 } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 2. The condition for which the system of equations {tex} \mathrm { k } x - \mathrm { y } = 2 {/tex} and {tex} 6 x - 2 \mathrm { y } = 3 {/tex} has a unique solution is
{tex} \mathrm{k = 3} {/tex}
{tex} \mathrm {k \neq 3} {/tex}
{tex} \mathrm { k } \neq 0 {/tex}
{tex} \mathrm{k = 0} {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 3. The equations {tex} a x + b = 0 {/tex} and {tex} c x + d = 0 {/tex} are consistant if
{tex} a d = b c {/tex}
{tex} a d + b c = 0 {/tex}
{tex} a b - c d = 0 {/tex}
{tex} a b + c d = 0 {/tex}
ax+b=0, cx+d=0 are consistent if a/c=b/d
Correct Marks 1
Incorrectly Marks 0
Q 4. The solution to the system of equation {tex} | x + y | = 1 {/tex} and {tex} x - y = 0 {/tex} is given by
{tex} x = y = 1 / 2 {/tex}
{tex} x = y = - 1 / 2 {/tex}
{tex} x = 1 , y = 0 {/tex}
{tex} x = \mathrm { y } = 1 / 2 {/tex} or {tex} x = \mathrm { y } = - 1 / 2 {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 5. The value of {tex} x + y {/tex} in the solution of equations {tex} \frac { x } { 4 } + \frac { y } { 3 } = \frac { 5 } { 12 } {/tex} and {tex} \frac { x } { 2 } + y = 1 {/tex} is
{tex} 1 / 2 {/tex}
{tex} 3 / 2 {/tex}
{tex}2{/tex}
{tex} 5 / 2 {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 6. If {tex} 1 - \frac { 1 } { x } = \frac { x + 1 } { x } , {/tex} what does {tex} x {/tex} equal to {tex} ? {/tex}
{tex}1{/tex} or {tex}2{/tex}
{tex} + 1 {/tex}
{tex} +1\ and -1 {/tex}
{tex} 0 {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 7. {tex} \mathrm{Assertion} {/tex}: The graph of equation y + 8 = x + 8 passes through origin. {tex} \mathrm{Reason} {/tex}: The graph of a linear equation with its constant term = 0 always passes through origin.
Both Assertion and Reason are true and Reason is the correct explanation of 'Assertion'
Both Assertion and Reason are true and Reason is not the correct explanation of 'Assertion'
Assertion is true but Reason is false
Assertion is false but Reason is true
Correct Marks 1
Incorrectly Marks 0
Q 8. {tex}\mathrm{Assertion}:{/tex}The equation {tex} 2 x + 3 y = 3 ( 2 + y ) {/tex} has a unique solution.
{tex}\mathrm{Reason}:{/tex} The linear equation in two variables has a unique solution.
Both Assertion and Reason are true and Reason is the correct explanation of 'Assertion'
Both Assertion and Reason are true and Reason is not the correct explanation of 'Assertion'
Assertion is true but Reason is false
Assertion is false but Reason is true
Correct Marks 1
Incorrectly Marks 0
Q 9. What can be said regarding a line of its slope is zero
The line is {tex} x {/tex} -axis
The line is parallel to {tex} x {/tex} -axis
It passes through origin
none of these
Correct Marks 1
Incorrectly Marks 0
Q 10. If {tex} a{/tex} and {tex} b{/tex} are real no's the equation {tex} 3 x - 5 + a = b x + 1 {/tex} has a unique solution {tex} x {/tex}
For all {tex} a{/tex} and {tex} b{/tex}
if {tex} a \neq 2 b {/tex}
if {tex} a \neq b {/tex}
if {tex} b \neq 3 {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 11. The equations {tex} 2 x + y - 5 = 0 {/tex} and {tex} 6 x + 3 y - 15 = 0 {/tex} shows
Coincident lines
Infinite number of solution
Unique solution
Both (A) and (B)
Correct Marks 1
Incorrectly Marks 0
Q 12. If {tex} \mathrm { p } > \mathrm { q } {/tex} and {tex} \mathrm { r } < 0 , {/tex} which of the following is/are true:-
{tex} \mathrm { pr } < \mathrm { qr } {/tex}
{tex} \mathrm {p + r > q + r} {/tex}
{tex} \mathrm{p - r < q - r} {/tex}
Both (A) and (B)
Correct Marks 1
Incorrectly Marks 0
Q 13. The pair of equations {tex} y = 0 {/tex} and {tex} y = - 7 {/tex} has :
one solution
two solutions
infinitely many solutions
no solution
Correct Marks 1
Incorrectly Marks 0
Q 14. One equation of a pair of dependent linear equations is {tex} - 5 x + 7 y = 2 . {/tex} The second equation can be :
{tex} 10 x + 14 y + 4 = 0 {/tex}
{tex} - 10 x - 14 y + 4 = 0 {/tex}
{tex} - 10 x + 14 y + 4 = 0 {/tex}
{tex} 10 x - 14 y = - 4 {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 15. A pair of linear equations which has a unique solution {tex} x = 2 , y = - 3 {/tex} is :
{tex} x + y = - 1 {/tex}
{tex} 2 x - 3 y = - 5 {/tex}
{tex} 2 x + 5 y = - 11 {/tex}
{tex} 4 x + 10 y = - 22 {/tex}
{tex} x - 4 y - 14 = 0 {/tex}
{tex} 5 x - y - 13 = 0 {/tex}
Both B and C
Correct Marks 1
Incorrectly Marks 0
Q 16. The father's age is six times his son's age. Four years hence, the age of the father will be four times his son's age. The present ages, in years, of the son and the father are, respectively:
4 and 24
5 and 30
6 and 36
3 and 24
Correct Marks 1
Incorrectly Marks 0
Q 17. Sum of the digits of a 2-digit number is 9. When the digits are reversed (interchanged), it is found that the resulting number is greater than the original number by 27. Find the number.
63
45
54
36