Correct Marks 1
Incorrectly Marks 0
Q 1. If {tex} \sin \theta + \cos \theta = \sqrt { 2 } \cos \left( 90 ^ { \circ } - \theta \right) {/tex} then {tex} \cot \theta {/tex} is equal to
{tex} \frac { 1 } { \sqrt { 2 } } {/tex}
{tex} \frac { \sqrt { 3 } } { 2 } {/tex}
{tex} \frac { 1 } { \sqrt { 2 } - 1 } {/tex}
{tex} \sqrt { 2 } - 1 {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 2. If {tex} \sec \theta + \tan \theta = x {/tex} then the value of {tex} \sec \theta - \tan \theta {/tex} is equal to
{tex} - x {/tex}
{tex} \frac { 1 } { x } {/tex}
{tex} - \frac { 1 } { x } {/tex}
{tex} \sqrt { x } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 3. If {tex} \mathrm { x } = \mathrm { a } \sin \theta {/tex} and {tex} \mathrm { y } = \mathrm { b } \cos \theta , {/tex} then the value of {tex} \mathrm { b } ^ { 2 } \mathrm { x } ^ { 2 } + \mathrm { a } ^ { 2 } \mathrm { y } ^ { 2 } {/tex} is
{tex} \mathrm{a ^ { 2 } b ^ { 2 }} {/tex}
{tex}\mathrm{ a b} {/tex}
{tex} \mathrm{\frac { 1 } { a ^ { 2 } b ^ { 2 } }} {/tex}
{tex} \mathrm {\frac { 1 } { \mathrm { ab } }} {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 4. An equation is called an identity if
If is true for all values of variable
Not for all values of variabls but some value of variable
Exactly one value of variables
Exactly two value of variables
Correct Marks 1
Incorrectly Marks 0
Q 5. If {tex} x = ( \sec A + \tan A ) ( \sec B + \tan B ) ( \sec C + \tan C ) \& y = ( \sec A - \tan A ) ( \sec B + \tan B ) ( \sec C + \tan C ) {/tex} and {tex} x = y {/tex} then {tex} x \& y {/tex} is equal to
{tex} \pm 1 {/tex}
{tex}0{/tex}
{tex} \pm 2 {/tex}
None of these
Correct Marks 1
Incorrectly Marks 0
Q 6. If {tex} x = \cot ^ { 2 } \theta - \frac { 1 } { \sin ^ { 2 } \theta } {/tex} than the value of {tex} x {/tex} is
{tex} 1 {/tex}
{tex} - 1 {/tex}
{tex} \pm 1 {/tex}
zero
Correct Marks 1
Incorrectly Marks 0
Q 7. {tex} 2 \left( \sin ^ { 6 } \theta + \cos ^ { 6 } \theta \right) - 3 \left( \sin ^ { 4 } \theta + \cos ^ { 4 } \theta \right) {/tex} is equal
zero
1
-1
None of these
Correct Marks 1
Incorrectly Marks 0
Q 8. {tex} \sqrt { \frac { 1 + \sin \theta } { 1 - \sin \theta } } {/tex} is equal to
{tex} \sec \theta + \tan \theta {/tex}
{tex} \sec \theta - \tan \theta {/tex}
{tex} \sec ^ { 2 } \theta + \tan ^ { 2 } \theta {/tex}
{tex} \sec ^ { 2 } \theta - \tan ^ { 2 } \theta {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 9. {tex} \sec ^ { 4 } A - \sec ^ { 2 } A {/tex} is equal to
{tex} \tan ^ { 2 } A - \tan ^ { 4 } A {/tex}
{tex} \tan ^ { 4 } A - \tan ^ { 2 } A {/tex}
{tex} \tan ^ { 4 } A + \tan ^ { 2 } A {/tex}
{tex} \tan ^ { 2 } A + \tan ^ { 4 } A {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 10. {tex} \cos ^ { 4 } A - \sin ^ { 4 } A {/tex} is equal to
{tex} 2 \cos ^ { 2 } A + 1 {/tex}
{tex} 2 \cos ^ { 2 } A - 1 {/tex}
{tex} 2 \sin ^ { 2 } - 1 {/tex}
{tex} 2 \sin ^ { 2 } A + 1 {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 11. {tex} \mathrm { P } = ( 1 + \cot \theta - \cosec \theta ) ( 1 + \tan \theta + \sec \theta ) {/tex}
the value of {tex}\mathrm P {/tex} is equal to
1
2
4
zero
Correct Marks 1
Incorrectly Marks 0
Q 12. {tex} ( \cosec \theta - \sin \theta ) ( \sec \theta - \cos \theta ) ( \tan \theta + \cot \theta ) {/tex} is equal to
zero
1
-1
none of these
Correct Marks 1
Incorrectly Marks 0
Q 13. The value of is equal to:
{tex} \sqrt { 3 } {/tex}
{tex} - \sqrt { 3 } {/tex}
{tex} \frac { 1 } { \sqrt { 3 } } {/tex}
{tex} - \frac { 1 } { \sqrt { 3 } } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 14. The expression {tex} \sqrt { \sin ^ { 2 } ( 37.5 ) ^ { \circ } + \cos ^ { 2 } ( 37.5 ) ^ { \circ } } + \sqrt { \cos ^ { 2 } ( 37.5 ) ^ { \circ } + sin ^ { 2 } ( 37.5 ) ^ { \circ } } {/tex} simplifies to:
an irrational number
a prime number
a natural number which is not composite
a real number of the form {tex} a + \sqrt { b } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 15. If {tex} 15 \sin ^ { 4 } \alpha + 10 \cos ^ { 4 } \alpha = 6 , {/tex} then the value of {tex}8 \cosec ^ { 4 } \alpha + 27 \sec ^ { 6 } \alpha {/tex} is
200
250
220
None of these
Correct Marks 1
Incorrectly Marks 0
Q 16. If {tex} a = \frac { \cot \theta } { \cot \theta - \cot 3 \theta }\ \ \& \ b = \frac { \tan \theta } { \tan \theta - \tan 3 \theta } {/tex} then {tex} \sqrt { a + b } {/tex} is equal to
{tex} \pm 2 {/tex}
{tex} - 2 {/tex}
{tex} + 1 {/tex}
{tex} - 1 {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 17. If {tex} a \cos \theta - b \sin \theta = C {/tex} then {tex} a \sin \theta + b \cos \theta = {/tex}
{tex} \pm \sqrt { a ^ { 2 } + b ^ { 2 } + c ^ { 2 } } {/tex}
{tex} \pm \sqrt { a ^ { 2 } + b ^ { 2 } - c ^ { 2 } } {/tex}
{tex} \pm \sqrt { c ^ { 2 } - a ^ { 2 } - b ^ { 2 } } {/tex}
None of these
Correct Marks 1
Incorrectly Marks 0
Q 18. If {tex} a \cos \theta + b \sin \theta = 4 {/tex} and {tex} a \sin \theta - b \cos \theta = 3 {/tex} then {tex} \left( a ^ { 2 } + b ^ { 2 } \right) {/tex} is equal to
7
12
25
None of these
Correct Marks 1
Incorrectly Marks 0
Q 19. If {tex} \cos A = \frac { 4 } { 5 } {/tex} then the value of {tex} \tan A {/tex} is :
{tex} \frac { 3 } { 5 } {/tex}
{tex} \frac { 3 } { 4 } {/tex}
{tex} \frac { 4 } { 3 } {/tex}
{tex} \frac { 1 } { 8 } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 20. The value of the expression [cosec {tex} \left( 75 ^ { \circ } + \theta \right) {/tex} {tex} \left. - \sec \left( 15 ^ { \circ } - \theta \right) - \tan \left( 55 ^ { \circ } + \theta \right) + \cot \left( 35 ^ { \circ } - \theta \right) \right] {/tex} is :
{tex} - 1 {/tex}
{tex} 0 {/tex}
{tex} 1 {/tex}
{tex} \frac { 3 } { 2 } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 21. Given that {tex} \sin \theta = \frac { a } { b } {/tex} then {tex} \cos \theta {/tex} is equal to
{tex} \frac { b } { \sqrt { b ^ { 2 } - a ^ { 2 } } } {/tex}
{tex} \frac { b } { a } {/tex}
{tex} \frac { \sqrt { b ^ { 2 } - a ^ { 2 } } } { b } {/tex}
{tex} \frac { a } { \sqrt { b ^ { 2 } - a ^ { 2 } } } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 22. The value of (tan {tex} \left. 1 ^ { \circ } \tan 2 ^ { \circ } \tan 3 ^ { \circ } \dots \tan 89 ^ { \circ } \right) {/tex} is :
{tex} { 0 } {/tex}
{tex}1{/tex}
{tex}2{/tex}
{tex} \frac { 1 } { 2 } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 23. If {tex} \Delta A B C {/tex} is right angled at {tex} C , {/tex} then the value of {tex} \cos {/tex} {tex} ( A + B ) {/tex} is :
{tex} 0{/tex}
{tex} 1{/tex}
{tex} \frac { 1 } { 2 } {/tex}
{tex} \frac { \sqrt { 3 } } { 2 } {/tex}
Correct Marks 1
Incorrectly Marks 0
Q 24. If {tex} \sin A + \sin ^ { 2 } A = 1 , {/tex} then the value of the expression {tex} \left( \cos ^ { 2 } A + \cos ^ { 4 } A \right) {/tex} is :
{tex} 1{/tex}
{tex} \frac { 1 } { 2 } {/tex}
{tex} 2{/tex}
{tex} 3{/tex}
Correct Marks 1
Incorrectly Marks 0
Q 25. Given that {tex} \sin \alpha = \frac { 1 } { 2 } {/tex} and {tex} \cos \beta = \frac { 1 } { 2 } {/tex}, then the value of {tex} ( \alpha + \beta ) {/tex} is :
{tex} 0 ^ { \circ } {/tex}
{tex} 30 ^ { \circ } {/tex}
{tex} 60 ^ { \circ } {/tex}
{tex} 90 ^ { \circ } {/tex}