# Class 10

Explore popular questions from Constructions for Class 10. This collection covers Constructions previous year Class 10 questions hand picked by experienced teachers.

## Mathematics

Constructions

Correct Marks 1

Incorrectly Marks 0

Q 1. To divide a line segment {tex} A B {/tex} in the ratio {tex} 5: 7 , {/tex} first a ray {tex} A X {/tex} is drawn so that {tex} \angle B A X {/tex} is an acute angle and then at equal distances points are marked on the ray {tex} A X {/tex} such that the minimum number of these points is:

A

8

B

10

C

11

12

##### Explanation Correct Marks 1

Incorrectly Marks 0

Q 2. To divide a line segment {tex} A B {/tex} in ratio {tex} 4: 7 , {/tex} a ray {tex} A X {/tex} is drawn first such that {tex} \angle B A X {/tex} is an acute angle and then points {tex} A _ { 1 } , A _ { 2 } , A _ { 3 } , \ldots {/tex} are located at equal distances on the ray {tex} A X {/tex} and the point {tex} B {/tex} is joined to :

A

{tex} A _ { 12 } {/tex}

{tex} A _ { 11 } {/tex}

C

{tex} A _ { 10 } {/tex}

D

{tex} A _ { 9 } {/tex}

##### Explanation Correct Marks 1

Incorrectly Marks 0

Q 3. To divide a line segment {tex} A B {/tex} in the ratio 5: 6 draw a ray {tex} A X {/tex} such that {tex} \angle B A X {/tex} is an acute angle, then draw a ray {tex} B Y {/tex} parallel to {tex} A X {/tex}, and the points, {tex} A _ { 1 } {/tex} {tex} A _ { 2 } \ A _ { 3 } , \ldots {/tex} and {tex} B _ { 1 } \ B _ { 2 } \ , B _ { 3 } , \ldots {/tex} are located at equal distances on ray {tex} A X {/tex} and {tex} B Y , {/tex} respectively. Then the points joined are

{tex} A _ { 5 } {/tex} and {tex} B _ { 6 } {/tex}

B

{tex} A _ { 6 } {/tex} and {tex} B _ { 5 } {/tex}

C

{tex} A _ { 4 } {/tex} and {tex} B _ { 5 } {/tex}

D

{tex} A _ { 5 } {/tex} and {tex} B _ { 4 } {/tex}

##### Explanation  Correct Marks 1

Incorrectly Marks 0

Q 4. To draw a pair of tangents to a circle which are inclined to each other at an angle of {tex} 60 ^ { \circ } , {/tex} it is required to draw tangents at end points of those two radii of the circle, the angle between them should be:

A

{tex} 135 ^ { \circ } {/tex}

B

{tex} 90 ^ { \circ } {/tex}

C

{tex} 60 ^ { \circ } {/tex}

{tex} 120 ^ { \circ } {/tex}

##### Explanation  Correct Marks 1

Incorrectly Marks 0

Q 5. To construct a triangle similar to a given {tex} \Delta A B C {/tex} with its sides {tex} \frac { 3 } { 7 } {/tex} of the corresponding sides of {tex} \triangle A B C {/tex}, first draw a ray {tex} B X {/tex} such that {tex} \angle C B X {/tex} is an acute angle and {tex} X {/tex} lies on the opposite side of {tex} A {/tex} with respect to {tex} B C {/tex}. Then located points {tex} B _ { 1 }, B _ { 2 }, B _ { 3 }, {/tex} {tex} \ldots {/tex} on {tex} B X {/tex} at equal distances and next step is to join:

A

{tex} B _ { 10 } {/tex} to {tex} C {/tex}

B

{tex} B _ { 3 } {/tex} to {tex} C {/tex}

{tex} B _ { 7 } {/tex} to {tex} C {/tex}

D

{tex} B _ { 4 } {/tex} to {tex} C {/tex}

##### Explanation Correct Marks 1

Incorrectly Marks 0

Q 6. To construct a triangle similar to a given {tex} \triangle A B C {/tex} with its side {tex} \frac { 8 } { 5 } {/tex} of the corresponding sides of {tex} \Delta A B C {/tex} draw a ray {tex} B X {/tex} such that {tex} \angle C B X {/tex} is an acute angle and {tex} X {/tex} is on the opposite side of {tex} A {/tex} with respect to {tex} B C {/tex}. The minimum number of points to be located at equal distances on the ray {tex} B X {/tex} :

A

5

8

C

13

D

3

##### Explanation 